Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_and_electronics_1:aufgabe_4.5.2_mit_rechnung [2023/03/23 14:17] – angelegt - Externe Bearbeitung 127.0.0.1 | electrical_engineering_and_electronics_1:aufgabe_4.5.2_mit_rechnung [2026/01/20 10:08] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| <panel type=" | <panel type=" | ||
| - | <WRAP right> | + | <WRAP right> {{:elektrotechnik_1: |
| - | {{elektrotechnik_1: | + | |
| - | </ | + | |
| A circuit is given with the following parameters\\ | A circuit is given with the following parameters\\ | ||
| Zeile 13: | Zeile 11: | ||
| $R_4=10 ~\Omega$ | $R_4=10 ~\Omega$ | ||
| - | Determine the open circuit voltage between A and B using the principle of superposition.\\ | + | Determine the open circuit voltage between A and B using the principle of superposition. |
| <button size=" | <button size=" | ||
| + | |||
| * What do the individual circuits look like, by which the effects of the individual sources can be calculated? \\ Which equivalent resistor must be used to replace a current or voltage source when calculating the individual effects? | * What do the individual circuits look like, by which the effects of the individual sources can be calculated? \\ Which equivalent resistor must be used to replace a current or voltage source when calculating the individual effects? | ||
| * Where are the open-circuit voltages applied when looking at the individual components? | * Where are the open-circuit voltages applied when looking at the individual components? | ||
| + | |||
| </ | </ | ||
| <button size=" | <button size=" | ||
| - | First, the individual circuits must be created, from which the effect of the individual sources between points A and B can be determined. | + | First, the individual circuits must be created, from which the effect of the individual sources between points A and B can be determined. \\ \\ **(Voltage) source $U_1$** |
| - | \\ \\ | + | |
| - | **(Voltage) source $U_1$** | + | |
| * substitute the current source $I_2$ with a short-circuit | * substitute the current source $I_2$ with a short-circuit | ||
| * substitute the voltage source $U_3$ with an open circuit | * substitute the voltage source $U_3$ with an open circuit | ||
| - | {{elektrotechnik_1: | + | {{:elektrotechnik_1: |
| The components can be moved in order to understand the circuit s bit better. | The components can be moved in order to understand the circuit s bit better. | ||
| - | {{elektrotechnik_1: | + | {{:elektrotechnik_1: |
| For the open circuit, no current is flowing through any resistor. Therefore, the effect is: $U_{AB,1} = U_1$ | For the open circuit, no current is flowing through any resistor. Therefore, the effect is: $U_{AB,1} = U_1$ | ||
| Zeile 42: | Zeile 40: | ||
| * substitute the voltage source $U_3$ with an open circuit | * substitute the voltage source $U_3$ with an open circuit | ||
| - | {{elektrotechnik_1: | + | {{:elektrotechnik_1: |
| Also here, the components can be shifted for a better understanding: | Also here, the components can be shifted for a better understanding: | ||
| - | {{elektrotechnik_1: | + | {{:elektrotechnik_1: |
| Here, the current source $I_2$ creates a voltage drop $U_{AB_2}$ on the resistor $R_2$ : $U_{\rm AB,2} = - R_1 \cdot I_2$ | Here, the current source $I_2$ creates a voltage drop $U_{AB_2}$ on the resistor $R_2$ : $U_{\rm AB,2} = - R_1 \cdot I_2$ | ||
| Zeile 55: | Zeile 53: | ||
| * substitute the current source $I_2$ with a short-circuit | * substitute the current source $I_2$ with a short-circuit | ||
| - | {{elektrotechnik_1: | + | {{:elektrotechnik_1: |
| - | Again, rearranging the circuit might help for an understanding: | + | Again, rearranging the circuit might help for an understanding: |
| - | {{elektrotechnik_1: | + | {{:elektrotechnik_1: |
| - | In this case, between the unloaded outputs $\rm A$ and $\rm B$ there will be an unloaded voltage divider given by $R_3$ and $R_4$. | + | In this case, between the unloaded outputs $\rm A$ and $\rm B$ there will be an unloaded voltage divider given by $R_3$ and $R_4$. On $R_1$ there is no voltage drop since there is no current flow out of the unloaded outputs. \\ Therefore: |
| - | On $R_1$ there is no voltage drop since there is no current flow out of the unloaded outputs. \\ | + | |
| - | Therefore: | + | |
| - | \begin{align*} | + | \begin{align*} U_{\rm AB,3} = \frac{R_4}{R_3 + R_4} \cdot U_3 \end{align*} |
| - | U_{\rm AB,3} = \frac{R_4}{R_3 + R_4} \cdot U_3 | + | |
| - | \end{align*} | + | |
| - | \\ \\ | + | \\ \\ **resulting voltage** |
| - | **resulting voltage** | + | |
| - | \begin{align*} | + | \begin{align*} U_{\rm AB} &= U_1 - R_1 \cdot I_2 + \frac{R_4}{R_3 + R_4} \cdot U_3 \\ \end{align*} |
| - | U_{\rm AB} & | + | |
| - | \end{align*} | + | |
| </ | </ | ||
| - | <button size=" | + | <button size=" |
| - | \begin{align*} | + | |
| - | U_{\rm AB} & | + | |
| - | U_{\rm AB} & = 0.333... ~{\rm V} \rightarrow 0.3 ~{\rm V} \\ | + | |
| - | \end{align*} | + | |
| - | \\ | + | |
| - | </ | + | |
| </ | </ | ||