Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block01 [2025/09/27 13:47] – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1electrical_engineering_and_electronics_1:block01 [2025/09/29 21:52] (aktuell) mexleadmin
Zeile 1: Zeile 1:
 +====== Block 01 — Physical quantities and SI system ======
 +
 +===== Learning objectives =====
 +<callout>
 +After this 90-minute block, you can
 +  * Use the SI base quantities, units, and symbols correctly; convert between units with prefixes.
 +  * Distinguish base vs. derived quantities; express key EE units (e.g. $\rm V$, $\rm \Omega$) in SI base units.
 +  * Apply quantity equations and perform unit (dimensional) checks; contrast with normalized (dimensionless) equations.
 +  * Read and use common Latin/Greek letter symbols; distinguish uppercase/lowercase and instantaneous vs. constant quantities.
 +</callout>
 +
 +===== 90-minute plan =====
 +  - Warm-up (10 min): 
 +    - “What is the unit of conductivity? of energy?” 
 + - Quick prefix quiz; everyday magnitude estimates ($\rm mA$, $\rm k\Omega$, $\rm \mu F$).
 +  - Core concepts & derivations (60 min): 
 +    - SI base set → derived units; prefix rules; 
 + - quantity vs. normalized equations; 
 + - dimensional checks.
 +    -  Prefix ladder ($\rm E$…$\rm a$) and best-practice rounding/checks.
 +    - Symbols & Greek letters in EEE1; time-varying vs constant symbols.
 +  - Practice (15 min): Fast conversions and unit checks (individual → pair).
 +  - Wrap-up (5 min): Summary table; common pitfalls checklist.
 +
 +===== Conceptual overview =====
 +<callout icon="fa fa-lightbulb-o" color="blue">
 +  - Units are the grammar of engineering and physics. 
 +  - The SI defines seven **base quantities** and units; all other (derived) units are built from these without extra numerical factors. The SI defines seven **base quantities** and units.
 +  - In EEE1 we work strictly in the SI system, combining **numerical value × unit** and tracking dimensions at every step (e.g., $I=2~\rm A$ means “two times one ampere”). 
 +  - Derived units (e.g., $\rm V$, $\rm \Omega$, $\rm S$) must reduce to base units without hidden factors. 
 +  - **Prefixes** scale units by powers of ten to keep numbers readable. Prefixes compress very large and very small numbers so we can compute and compare safely. 
 +  - **Quantity equations** keep units; **normalized equations** cancel units to yield dimensionless ratios (e.g., efficiency). 
 +  -   In EE, symbol choices and letter case matter: $U$ vs. $u(t)$, $\rm M$ (mega) vs. $\rm m$ (milli). We adopt a consistent symbol set (Latin + Greek), and distinguish **constants** (capital letters) from **time functions** (lowercase, e.g., $u(t)$).
 +  - Finally, we preview the three anchor quantities for the next blocks: **charge** (what moves), **current** (how fast charge moves), and **voltage** (energy per charge). Physics describes **quantities** with a **numerical value × unit** (e.g., $I=2~\rm{A}$). 
 +  </callout>
 +
 +===== Core content =====
 +
 +==== SI base quantities and units ====
 +<WRAP right 50%>
 +<tabcaption baseSI| SI base quantities (SI) >
 +
 +^ Base quantity           ^ Name      ^ Unit         ^ Definition                       ^
 +| Time                    | Second    | ${\rm s}$     | Oscillation of $Cs$-Atom         |
 +| Length                  | Meter     | ${\rm m}$     | by s und speed of light          |
 +| el. Current             | Ampere    | ${\rm A}$     | by s and elementary charge       |
 +| Mass                    | Kilogram  | ${\rm kg}$    | still by kg prototype            |
 +| Temperature             | Kelvin    | ${\rm K}$     | by triple point of water         |
 +| amount of \\ substance  | Mol       | ${\rm mol}$   | via number of $^{12}C$ nuclides  |
 +| luminous \\ intensity   | Candela   | ${\rm cd}$    | via given radiant intensity      |
 +</tabcaption>
 +</WRAP>
 +
 +  * For practical applications of physical laws of nature, **physical quantities** are put into mathematical relationships.
 +  * There are basic quantities based on the SI system of units (French for Système International d'Unités), see below.
 +  * In order to determine the basic quantities quantitatively (quantum = Latin for //how big//), **physical units** are defined, e.g. ${\rm metre}$ for length.
 +  * In electrical engineering, the first three basic quantities (cf. <tabref baseSI> ) are particularly important. \\ Mass is important for the representation of energy and power.
 +
 +  * Each physical quantity is indicated by a product of **numerical value** and **unit**: \\ e.g. $I = 2~{\rm A}$
 +    * This is the short form of $I = 2\cdot 1~{\rm A}$
 +    * $I$ is the physical quantity, here: electric current strength
 +    * $\{I\} = 2 $ is the numerical value
 +    * $ [I] = 1~{\rm A}$ is the (measurement) unit, here: ${\rm Ampere}$
 +
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 +==== Common derived quantities ====
 +
 +  * Besides the basic quantities, there are also quantities derived from them, e.g. $[F] = [m]\cdot [a] \rightarrow 1~{\rm N} = 1 ~{\rm kg} \cdot {{1 ~{\rm m}}\over{1 ~{\rm s}^2}}$.
 +  * SI units should be preferred for calculations. These can be derived from the basic quantities **without a numerical factor**. \\ example: 
 +    * The pressure unit bar (${\rm bar}$) is an SI unit.
 +    * BUT: The obsolete pressure unit "Standard atmosphere" ($=1.013~{\rm bar}$) is **__not__** an SI unit.
 +  *  To prevent the numerical value from becoming too large or too small, it is possible to replace a decimal factor with a prefix. 
 +
 +We will see, that a lot of electrical quantities are derived quantities.
 +
 +==== Prefixes ====
 +<WRAP right 50%>
 +<tabcaption prefix1 | Prefixes I>
 +^ prefix ^ prefix symbol ^ meaning^ 
 +| Yotta  | ${\rm Y}$      | $10^{24}$   
 +| Zetta  | ${\rm Z}$      | $10^{21}$   
 +| Exa    | ${\rm E}$      | $10^{18}$   
 +| Peta   | ${\rm P}$      | $10^{15}$   
 +| Tera   | ${\rm T}$      | $10^{12}$   
 +| Giga   | ${\rm G}$      | $10^{9}$    | 
 +| Mega   | ${\rm M}$      | $10^{6}$    | 
 +| Kilo   | ${\rm k}$      | $10^{3}$    | 
 +| Hecto  | ${\rm h}$      | $10^{2}$    | 
 +| Deka   | ${\rm de}$     | $10^{1}$    | 
 +</tabcaption>
 +
 +<tabcaption prefix2 | Prefixes II>
 +^ prefix ^ prefix symbol ^ meaning^ 
 +| Deci   | ${\rm d}$      | $10^{-1}$   
 +| Centi  | ${\rm c}$      | $10^{-2}$   
 +| Milli  | ${\rm m}$      | $10^{-3}$   
 +| Micro  | ${\rm u}$, $µ$  | $10^{-6}$   
 +| Nano   | ${\rm n}$      | $10^{-9}$    | 
 +| Piko   | ${\rm p}$      | $10^{-12}$ 
 +| Femto  | ${\rm f}$      | $10^{-15}$   
 +| Atto   | ${\rm a}$      | $10^{-18}$   
 +| Zeppto | ${\rm z}$      | $10^{-21}$   
 +| Yocto  | ${\rm y}$      | $10^{-24}$   
 +</tabcaption>
 +</WRAP>
 +
 +  * Use prefixes to keep magnitudes practical (see <tabref prefix1> and <tabref prefix2>).
 +  * Instead of writing zeroes for like in $0.000000004 ~\rm C $ is is easier to write $4 \rm ~nC $.
 +  * For calculation it is often easier to write $4 ~\rm nC  = 4 \cdot 10^{-9} ~C$ or the notation ''\rm 4e-9 C''
 +
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 +==== Physical equations ====
 +
 +  * Physical equations allow a connection of physical quantities.
 +  * There are two types of physical equations to distinguish:
 +    * Quantity equations (in German: //Größengleichungen// )
 +    * Normalized quantity equations (also called related quantity equations, in German //normierte Größengleichungen//)
 +
 +<WRAP group>
 +<WRAP half column>
 +<callout color="gray">
 +
 +==== Quantity Equations ====
 +The vast majority of physical equations result in a physical unit that does not equal $1$.
 +\\ \\
 +
 +Example: Force $F = m \cdot a$ with $[{\rm F}] = 1~\rm kg \cdot {{{\rm m}}\over{{\rm s}^2}}$
 +\\ \\
 +
 +  * A unit check should always be performed for quantity equations
 +  * Quantity equations should generally be preferred
 +
 +</callout>
 +</WRAP>
 +<WRAP half column>
 +<callout color="gray">
 +
 +==== normalized Quantity Equations ====
 +
 +In normalized quantity equations, the measured value or calculated value of a quantity equation is divided by a reference value.
 +This results in a dimensionless quantity relative to the reference value.
 +
 +Example: The efficiency $\eta = {{P_{\rm O}}\over{P_{\rm I}}}$ is given as quotient between the outgoing power $P_{\rm O}$ and the incoming power $P_{\rm I}$.
 +
 +As a reference the following values are often used:
 +  * Nominal values (maximum permissible value in continuous operation) or
 +  * Maximum values (maximum value achievable in the short term)
 + 
 +For normalized quantity equations, the units should **always** cancel out.
 +
 +</callout>
 +</WRAP>
 +</WRAP>
 +
 +<callout title="Example for a quantity equation">
 +
 +Let a body with the mass $m = 100~{\rm kg}$ be given. The body is lifted by the height $s=2~{\rm m}$. \\
 +What is the value of the needed work?
 +
 +\\ \\
 +physical equation:
 +<WRAP indent><WRAP indent>
 +Work = Force $\cdot$ displacement
 +\\ $W = F \cdot s \quad\quad\quad\;$ where $F=m \cdot g$
 +\\ $W = m \cdot g \cdot s \quad\quad$ where $m=100~{\rm kg}$, $s=2~m$ and $g=9.81~{{{\rm m}}\over{{\rm s}^2}}$
 +\\ $W = 100~kg \cdot 9.81 ~{{{\rm m}}\over{{\rm s}^2}} \cdot 2~{\rm m} $
 +\\ $W = 100     \cdot 9.81 \cdot 2 \;\; \cdot \;\; {\rm kg} \cdot {{{\rm m}}\over{{\rm s}^2}}         \cdot {\rm m}$
 +\\ $W = 1962 \quad\quad \cdot \quad\quad\;  \left( {\rm kg} \cdot {{{\rm m}}\over{{\rm s}^2}} \right) \cdot {\rm m} $
 +\\ $W = 1962~{\rm Nm} = 1962~{\rm J} $
 +</WRAP></WRAP>
 +
 +</callout>
 +
 +==== Letters for physical quantities ====
 +<WRAP right 50%>
 +<tabcaption tab03| greek letters >
 +^ Uppercase letters  ^ Lowercase letters          ^ Name     ^ Application ^
 +| $A$                | $\alpha$                   | Alpha    | angles, linear temperature coefficient                       |
 +| $B$                | $\beta$                    | Beta     | angles, quadratic temperature coefficient, current gain      |
 +| $\Gamma$           | $\gamma$                   | Gamma    | angles                                                       |
 +| $\Delta$           | $\delta$                   | Delta    | small deviation, length of a air gap                         |
 +| $E$                | $\epsilon$, $\varepsilon$  | Epsilon  | electrical field constant, permittivity                      |
 +| $Z$                | $\zeta$                    | Zeta     | - (math function)                                            |
 +| $H$                | $\eta$                     | Eta      | efficiency                                                   |
 +| $\Theta$           | $\theta$, $\vartheta$      | Theta    | temperature in Kelvin                                        |
 +| $I$                | $\iota$                    | Iota     | -                                                            |
 +| $K$                | $\kappa$                   | Kappa    | specific conductivity                                        |
 +| $\Lambda$          | $\lambda$                  | Lambda   | - (wavelength)                                               |
 +| $M$                | $\mu$                      | Mu       | magnetic field constant, permeability                        |
 +| $N$                | $\nu$                      | Nu       | -                                                            |
 +| $\Xi$              | $\xi$                      | Xi       | -                                                            |
 +| $O$                | $\omicron$                 | Omicron  | -                                                            |
 +| $\Pi$              | $\pi$                      | Pi       | math. product operator, math. constant                       |
 +| $R$                | $\rho$, $\varrho$          | Rho      | specific resistivity                                         |
 +| $\Sigma$           | $\sigma$                   | Sigma    | math. sum operator, alternatively for specific conductivity  |
 +| $T$                | $\tau$                     | Tau      | time constant                                                |
 +| $\Upsilon$         | $\upsilon$                 | Upsilon  | -                                                            |
 +| $\Phi$             | $\phi$, $\varphi$          | Phi      | magnetic flux, angle, potential                              |
 +| $X$                | $\chi$                     | Chi      | -                                                            |
 +| $\Psi$             | $\psi$                     | Psi      | linked magnetic flux                                         |
 +| $\Omega$           | $\omega$                   | Omega    | unit of resistance, angular frequency                        |
 +</tabcaption>
 +</WRAP>
 +
 +Latin/Greek letters are reused across physics.
 +
 +In physics and electrical engineering, the letters for physical quantities are often close to the English term.
 +
 +Thus explains $C$ for //**__C__**apacity//, $Q$ for //**__Q__**uantity// and $\varepsilon_0$ for the //**__E__**lectical Field Constant//.
 +But, maybe you already know that $C$ is used for the thermal capacity as well as for the electrical capacity.
 +The Latin alphabet does not have enough letters to avoid conflicts for the scope of physics.
 +For this reason, Greek letters are used for various physical quantities (see <tabref tab03>).
 +
 +Especially in electrical engineering, **upper/lower case letters** are used to distinguish between
 +  * a constant (time-independent) quantity, \\ e.g. the period $T$
 +  * or a time-dependent quantity, \\ e.g. the instantaneous voltage $u(t)$
 +  * EE relies on case and context (e.g., $U$ vs. $u(t)$). Time-varying quantities often use lowercase, constants uppercase.
 +
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 +
 +==== Notation & units ====
 +The course consistently uses the following symbols, units, and typical values:
 +
 +<tabcaption notation | Course-wide notation and units>
 +^ Symbol ^ Quantity                          ^ SI unit   ^ name of the unit  ^ Typical values  ^
 +| $q$       | Electric charge                | $\rm C$   | Coulomb           | $10^{-19} ~\rm C$ (electron) to $\rm mC$              |
 +| $I$       | Electric current               | $\rm A$   | Ampere            | $\rm \mu A$ (sensors) to $\rm kA$ (lightning)         |
 +| $U$       | Voltage (potential difference)  | $\rm V$  | Volt              | $\rm \mu V$ (noise) to $\rm MV$ (transmission lines)  |
 +| $\varphi$  | Electric potential            | $\rm V$   | Volt              | — |
 +| $P$       | Power                          | $\rm W$   | Watt              | $\rm mW$ (electronics) to $\rm MW$ (machines)         |
 +| $W$       | Energy                         | $\rm J$   | Joule             | $\rm µJ$ (capacitors) to $\rm MJ$ (batteries)         |
 +| $R$       | Resistance                     | $\rm \Omega$  | Ohm           | $\rm mΩ$ to $\rm MΩ$                                  |
 +| $G$       | Conductance                    | $\rm S$   | Siemens           | $\rm µS$ to $\rm S$                                   |
 +| $\rho$    | Resistivity                    | $\rm \Omega \cdot m$      | — | $1.7 \cdot 10^{-8} ~\rm \Omega m$ (Cu)                |
 +| $\sigma$  | Conductivity                   | $\rm S/m$                 | — | $5.8 \cdot 10^{7} ~\rm S/m$ (Cu)                      |
 +| $C$       | Capacitance                    | $\rm F$    | Farad            | $\rm pF$ (ceramic) to $\rm F$ (supercaps)             |
 +| $L$       | Inductance                     | $\rm H$    | Henry            | $\rm \mu H$ to $\rm H$                                |
 +| $E$       | Electric field strength        | $\rm V/m$                 | — | $\rm 1 ~\rm V/m$ to $\rm MV/m$ (breakdown)            |
 +| $D$       | Electric flux density          | $\rm C/m²$                | — | — |
 +| $B$       | Magnetic flux density          | $\rm T$    | Tesla            | $\rm \mu T$ (Earth) to several $\rm T$ (MRI)          |
 +| $H$       | Magnetic field strength        | $\rm A/m$                 | — | — |
 +| $\Phi$    | Magnetic flux                  | $\rm Wb$   | Weber            | $\rm \mu Wb$ to $\rm mWb$                             |
 +| $\theta$  | magnetic voltage (Magnetomotive force)                     | $\rm A \cdot turn$  | — | — |
 +| $R$       | Reluctance                      | $\rm A/Wb$               | — | — |
 +</tabcaption>
 +
 +===== Common pitfalls & misconceptions =====
 +  * **Case matters:** $\rm M$ (mega, $10^6$) vs. $\rm m$ (milli, $10^{-3}$);
 +  * **Micro symbol:** use $\rm \mu$ (or ''u'' only when typing constraints exist); 
 +  * **usage of prefixes** never stack prefixes (no “$\rm mµF$”).
 +  * **Mixed units:** keep SI consistently; avoid mixing $\rm hours$/$\rm Wh$ inside SI derivations.
 +  * **Units vs. variables:** don’t confuse $W$ (work) with $\rm W$ (Watt = unit of power $\rm P$ = work per second). \\ Don’t confuse $C$ (capacity = charge per voltage) with $\rm C$ (Coulomb = unit of charge $\rm Q$).
 +  * **Units vs. prefixes:** don’t confuse $\rm mN$ (Millinewton) with $\rm Nm$ (Newton meter).
 +  * **Normalized vs. quantity equations:** dimensionless ratios should cancel units; if not, something’s wrong. 
 +
 +===== Exercises =====
 +
 +
 +==== Quick checks ====
 +
 +#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~.1  Unit check (quantity equation) 
 +#@TaskText_HTML@#   
 +
 +Show that $P=U\cdot I$ has unit watt. (Better to be calulcated after reading Block02)
 +
 +#@ResultBegin_HTML~conv1~@#
 +  - $[U]=\rm{V}=\rm{kg}\,\rm{m}^2\,\rm{s}^{-3}\,\rm{A}^{-1}$, $[I]=\rm{A}$.  
 +  - $[P]=[U][I]=\rm{kg}\,\rm{m}^2\,\rm{s}^{-3}=\rm{W}$. 
 +#@ResultEnd_HTML@#
 +#@TaskEnd_HTML@# 
 +
 +#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~.2  Work from lifting (quantity equation) 
 +#@TaskText_HTML@#   
 +
 +How much energy is needed to lift 100 kg for 2 meters?
 +
 +#@ResultBegin_HTML~quant1~@#
 +  - $W=mgs$ with $m=100~\rm{kg},\,g=9.81~\rm{m/s^2},\,s=2~\rm{m}$ 
 +  - $W=100\cdot9.81\cdot2~\rm{Nm}=1962~\rm{J}$
 +#@ResultEnd_HTML@#
 +#@TaskEnd_HTML@# 
 +
 +#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~.1  Conversion 
 +#@TaskText_HTML@#   
 +
 +Convert $47~\rm{k\Omega}$ to $\rm{M\Omega}$ and $\Omega$.
 +
 +#@ResultBegin_HTML~conv2~@#
 +$47~\rm{k\Omega}=0.047~\rm{M\Omega}=47{,}000~\Omega$.
 +#@ResultEnd_HTML@#
 +#@TaskEnd_HTML@# 
 +
 +#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~.2  Dimension
 +#@TaskText_HTML@#   
 +
 +Is $\eta=\dfrac{P_\rm{O}}{P_\rm{I}}$ dimensionless? 
 +
 +#@ResultBegin_HTML~dim1~@#
 +Yes. Units cancel ($\rm W/W$); normalized equation. 
 +#@ResultEnd_HTML@#
 +#@TaskEnd_HTML@# 
 +
 +#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~.3  Conversion
 +#@TaskText_HTML@#   
 +
 +Which is larger: $5~\rm{mA}$ or $4500~\rm{\mu A}$? 
 +
 +#@ResultBegin_HTML~conv3~@#
 +$5~\rm{mA}=5000~\rm{\mu A}$, so $5~\rm{mA}$ is larger.
 +
 +#@ResultEnd_HTML@#
 +#@TaskEnd_HTML@# 
 +
 +#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~.4  Conversion
 +#@TaskText_HTML@#   
 +
 +True/False: $1~\rm{V}=1~\rm{Nm/As}$.
 +
 +#@ResultBegin_HTML~conv4~@#
 +True (from $W=U \cdot Q$).
 +#@ResultEnd_HTML@#
 +#@TaskEnd_HTML@# 
 +
 +==== Longer exercises ====
 +
 +{{tagtopic>chapter1_1&nodate&nouser&noheader&nofooter&order=custom}}
 +
 +===== Embedded resources =====
 +\\ \\
 +<WRAP column half>
 +A nice 10-minute intro into some of the main topics of this chapter
 +{{youtube>IOb3-JZPY0Y}}
 +</WRAP>
 +
 +<WRAP column half>
 +Short presentation of the SI units
 +{{youtube>hQpQ0hxVNTg}}
 +</WRAP>
 +\\ \\
 +<WRAP column half>
 +Orders of magnitude and why prefixes matter.
 +{{youtube>jjvIy04PwYI}}
 +</WRAP>
 +\\ \\
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 +
 +===== Mini-assignment / homework (optional) =====
 +List 10 everyday EE-relevant quantities (e.g., USB current, phone battery energy, LED forward voltage). 
 +For each:  
 +  * write as value × unit with an appropriate prefix, 
 +  * convert to base SI units, and
 +  * if a formula applies (e.g., $P=U\cdot I$), do a unit check.
 +