Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block01 [2025/09/27 14:20] mexleadminelectrical_engineering_and_electronics_1:block01 [2025/09/29 21:52] (aktuell) mexleadmin
Zeile 1: Zeile 1:
-===== Block 01 — Physical quantities and SI system =====+====== Block 01 — Physical quantities and SI system ======
  
-=== Learning objectives ===+===== Learning objectives =====
 <callout> <callout>
 +After this 90-minute block, you can
   * Use the SI base quantities, units, and symbols correctly; convert between units with prefixes.   * Use the SI base quantities, units, and symbols correctly; convert between units with prefixes.
   * Distinguish base vs. derived quantities; express key EE units (e.g. $\rm V$, $\rm \Omega$) in SI base units.   * Distinguish base vs. derived quantities; express key EE units (e.g. $\rm V$, $\rm \Omega$) in SI base units.
Zeile 9: Zeile 10:
 </callout> </callout>
  
-=== 90-minute plan ===+===== 90-minute plan =====
   - Warm-up (10 min):    - Warm-up (10 min): 
     - “What is the unit of conductivity? of energy?”      - “What is the unit of conductivity? of energy?” 
Zeile 22: Zeile 23:
   - Wrap-up (5 min): Summary table; common pitfalls checklist.   - Wrap-up (5 min): Summary table; common pitfalls checklist.
  
-=== Conceptual overview ===+===== Conceptual overview =====
 <callout icon="fa fa-lightbulb-o" color="blue"> <callout icon="fa fa-lightbulb-o" color="blue">
   - Units are the grammar of engineering and physics.    - Units are the grammar of engineering and physics. 
Zeile 33: Zeile 34:
   - Finally, we preview the three anchor quantities for the next blocks: **charge** (what moves), **current** (how fast charge moves), and **voltage** (energy per charge). Physics describes **quantities** with a **numerical value × unit** (e.g., $I=2~\rm{A}$).    - Finally, we preview the three anchor quantities for the next blocks: **charge** (what moves), **current** (how fast charge moves), and **voltage** (energy per charge). Physics describes **quantities** with a **numerical value × unit** (e.g., $I=2~\rm{A}$). 
   </callout>   </callout>
 +
 +===== Core content =====
  
 ==== SI base quantities and units ==== ==== SI base quantities and units ====
Zeile 67: Zeile 70:
     * The pressure unit bar (${\rm bar}$) is an SI unit.     * The pressure unit bar (${\rm bar}$) is an SI unit.
     * BUT: The obsolete pressure unit "Standard atmosphere" ($=1.013~{\rm bar}$) is **__not__** an SI unit.     * BUT: The obsolete pressure unit "Standard atmosphere" ($=1.013~{\rm bar}$) is **__not__** an SI unit.
-  *  To prevent the numerical value from becoming too large or too small, it is possible to replace a decimal factor with a prefix. These are listed in <tabref tab02>.+  *  To prevent the numerical value from becoming too large or too small, it is possible to replace a decimal factor with a prefix. 
  
 We will see, that a lot of electrical quantities are derived quantities. We will see, that a lot of electrical quantities are derived quantities.
Zeile 117: Zeile 120:
 <WRAP half column> <WRAP half column>
 <callout color="gray"> <callout color="gray">
-=== Quantity Equations ===+ 
 +==== Quantity Equations ====
 The vast majority of physical equations result in a physical unit that does not equal $1$. The vast majority of physical equations result in a physical unit that does not equal $1$.
 \\ \\ \\ \\
Zeile 131: Zeile 135:
 <WRAP half column> <WRAP half column>
 <callout color="gray"> <callout color="gray">
-=== normalized Quantity Equations ===+ 
 +==== normalized Quantity Equations ====
  
 In normalized quantity equations, the measured value or calculated value of a quantity equation is divided by a reference value. In normalized quantity equations, the measured value or calculated value of a quantity equation is divided by a reference value.
Zeile 147: Zeile 152:
 </WRAP> </WRAP>
 </WRAP> </WRAP>
 +
 +<callout title="Example for a quantity equation">
 +
 +Let a body with the mass $m = 100~{\rm kg}$ be given. The body is lifted by the height $s=2~{\rm m}$. \\
 +What is the value of the needed work?
 +
 +\\ \\
 +physical equation:
 +<WRAP indent><WRAP indent>
 +Work = Force $\cdot$ displacement
 +\\ $W = F \cdot s \quad\quad\quad\;$ where $F=m \cdot g$
 +\\ $W = m \cdot g \cdot s \quad\quad$ where $m=100~{\rm kg}$, $s=2~m$ and $g=9.81~{{{\rm m}}\over{{\rm s}^2}}$
 +\\ $W = 100~kg \cdot 9.81 ~{{{\rm m}}\over{{\rm s}^2}} \cdot 2~{\rm m} $
 +\\ $W = 100     \cdot 9.81 \cdot 2 \;\; \cdot \;\; {\rm kg} \cdot {{{\rm m}}\over{{\rm s}^2}}         \cdot {\rm m}$
 +\\ $W = 1962 \quad\quad \cdot \quad\quad\;  \left( {\rm kg} \cdot {{{\rm m}}\over{{\rm s}^2}} \right) \cdot {\rm m} $
 +\\ $W = 1962~{\rm Nm} = 1962~{\rm J} $
 +</WRAP></WRAP>
 +
 +</callout>
  
 ==== Letters for physical quantities ==== ==== Letters for physical quantities ====
Zeile 195: Zeile 219:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-===== Notation & units =====+==== Notation & units ====
 The course consistently uses the following symbols, units, and typical values: The course consistently uses the following symbols, units, and typical values:
  
Zeile 221: Zeile 245:
 </tabcaption> </tabcaption>
  
-==== Common pitfalls & misconceptions ====+===== Common pitfalls & misconceptions =====
   * **Case matters:** $\rm M$ (mega, $10^6$) vs. $\rm m$ (milli, $10^{-3}$);   * **Case matters:** $\rm M$ (mega, $10^6$) vs. $\rm m$ (milli, $10^{-3}$);
   * **Micro symbol:** use $\rm \mu$ (or ''u'' only when typing constraints exist);    * **Micro symbol:** use $\rm \mu$ (or ''u'' only when typing constraints exist); 
Zeile 230: Zeile 254:
   * **Normalized vs. quantity equations:** dimensionless ratios should cancel units; if not, something’s wrong.    * **Normalized vs. quantity equations:** dimensionless ratios should cancel units; if not, something’s wrong. 
  
-==== Exercises ==== +===== Exercises =====
-=== Worked example(s) ===+
  
-<callout> + 
-**1Unit check (quantity equation):**   +==== Quick checks ==== 
-Show that $P=U\cdot I$ has unit watt.+ 
 +#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~. Unit check (quantity equation)  
 +#@TaskText_HTML@#    
 + 
 +Show that $P=U\cdot I$ has unit watt. (Better to be calulcated after reading Block02) 
 + 
 +#@ResultBegin_HTML~conv1~@#
   - $[U]=\rm{V}=\rm{kg}\,\rm{m}^2\,\rm{s}^{-3}\,\rm{A}^{-1}$, $[I]=\rm{A}$.     - $[U]=\rm{V}=\rm{kg}\,\rm{m}^2\,\rm{s}^{-3}\,\rm{A}^{-1}$, $[I]=\rm{A}$.  
   - $[P]=[U][I]=\rm{kg}\,\rm{m}^2\,\rm{s}^{-3}=\rm{W}$.    - $[P]=[U][I]=\rm{kg}\,\rm{m}^2\,\rm{s}^{-3}=\rm{W}$. 
-</callout>+#@ResultEnd_HTML@# 
 +#@TaskEnd_HTML@# 
  
-<callout> +#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~.2  Work from lifting (quantity equation)  
-**2) Prefix conversion:**   +#@TaskText_HTML@#   
-$3.3~\rm{mA}=3.3\times10^{-3}~\rm{A}=3300~\rm{\mu A}$+
-</callout>+
  
-<callout> +How much energy is needed to lift 100 kg for meters?
-**3) Work from lifting (quantity equation):**   +
-$W=mgs$ with $m=100~\rm{kg},\,g=9.81~\rm{m/s^2},\,s=2~\rm{m}$.   +
-$W=100\cdot9.81\cdot2~\rm{Nm}=1962~\rm{J}$. +
-</callout>+
  
-=== Quick checks ===+#@ResultBegin_HTML~quant1~@# 
 +  - $W=mgs$ with $m=100~\rm{kg},\,g=9.81~\rm{m/s^2},\,s=2~\rm{m}$  
 +  - $W=100\cdot9.81\cdot2~\rm{Nm}=1962~\rm{J}$ 
 +#@ResultEnd_HTML@# 
 +#@TaskEnd_HTML@# 
  
 #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~.1  Conversion  #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~.1  Conversion 
Zeile 258: Zeile 286:
 Convert $47~\rm{k\Omega}$ to $\rm{M\Omega}$ and $\Omega$. Convert $47~\rm{k\Omega}$ to $\rm{M\Omega}$ and $\Omega$.
  
-#@ResultBegin_HTML~1~@#+#@ResultBegin_HTML~conv2~@#
 $47~\rm{k\Omega}=0.047~\rm{M\Omega}=47{,}000~\Omega$. $47~\rm{k\Omega}=0.047~\rm{M\Omega}=47{,}000~\Omega$.
 #@ResultEnd_HTML@# #@ResultEnd_HTML@#
Zeile 268: Zeile 296:
 Is $\eta=\dfrac{P_\rm{O}}{P_\rm{I}}$ dimensionless?  Is $\eta=\dfrac{P_\rm{O}}{P_\rm{I}}$ dimensionless? 
  
-#@ResultBegin_HTML~1~@#+#@ResultBegin_HTML~dim1~@#
 Yes. Units cancel ($\rm W/W$); normalized equation.  Yes. Units cancel ($\rm W/W$); normalized equation. 
 #@ResultEnd_HTML@# #@ResultEnd_HTML@#
Zeile 278: Zeile 306:
 Which is larger: $5~\rm{mA}$ or $4500~\rm{\mu A}$?  Which is larger: $5~\rm{mA}$ or $4500~\rm{\mu A}$? 
  
-#@ResultBegin_HTML~1~@#+#@ResultBegin_HTML~conv3~@#
 $5~\rm{mA}=5000~\rm{\mu A}$, so $5~\rm{mA}$ is larger. $5~\rm{mA}=5000~\rm{\mu A}$, so $5~\rm{mA}$ is larger.
  
Zeile 289: Zeile 317:
 True/False: $1~\rm{V}=1~\rm{Nm/As}$. True/False: $1~\rm{V}=1~\rm{Nm/As}$.
  
-#@ResultBegin_HTML~1~@#+#@ResultBegin_HTML~conv4~@#
 True (from $W=U \cdot Q$). True (from $W=U \cdot Q$).
 #@ResultEnd_HTML@# #@ResultEnd_HTML@#
 #@TaskEnd_HTML@#  #@TaskEnd_HTML@# 
  
-=== Longer exercises ===+==== Longer exercises ====
  
 {{tagtopic>chapter1_1&nodate&nouser&noheader&nofooter&order=custom}} {{tagtopic>chapter1_1&nodate&nouser&noheader&nofooter&order=custom}}
  
-=== Embedded resources ===+===== Embedded resources =====
 \\ \\ \\ \\
 <WRAP column half> <WRAP column half>
Zeile 317: Zeile 345:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-=== Mini-assignment / homework (optional) ===+===== Mini-assignment / homework (optional) =====
 List 10 everyday EE-relevant quantities (e.g., USB current, phone battery energy, LED forward voltage).  List 10 everyday EE-relevant quantities (e.g., USB current, phone battery energy, LED forward voltage). 
 For each:   For each: