Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block02 [2025/09/28 15:34] mexleadminelectrical_engineering_and_electronics_1:block02 [2026/01/10 13:30] (aktuell) mexleadmin
Zeile 1: Zeile 1:
-====== Block 02 — Electric chargecurrentvoltage ======+====== Block 02 — Electric ChargeCurrentVoltage ======
  
-===== Learning objectives =====+===== 2.0 Intro ===== 
 + 
 +==== 2.0.1 Learning Objectives =====
 <callout> <callout>
 +After this 90-minute block, you can
   * Define electric charge $Q$ and explain its quantization in multiples of the elementary charge $e$.   * Define electric charge $Q$ and explain its quantization in multiples of the elementary charge $e$.
   * Distinguish positive and negative charges, their interactions, and typical carriers (electrons, ions).   * Distinguish positive and negative charges, their interactions, and typical carriers (electrons, ions).
Zeile 12: Zeile 15:
 </callout> </callout>
  
-===== 90-minute plan =====+==== 2.0.2 Preparation at Home ==== 
 + 
 +Be aware, that EEE1 has 5 ECTS, i.e. an overall weekly load of about 8..10 hours (incl. our lecture in presence). \\ 
 +So, preparation and follow-up shall take about 5..6 hours (incl. 1.5h tutorial, when you go there).  
 + 
 +  * Please read through the present chapter and write down anything you did not understand. 
 +  * I also gave some clips for more clarification under 'Embedded resources' (check the text above/below, sometimes only part of the clip is interesting).  
 +I would assume, that reading my text first and watching the clips second once clarifying is needed shall work best. 
 + 
 +For checking your understanding please do the following exercises: 
 +  * 1.5.1 
 + 
 + 
 +==== 2.0.3 90-minute plan ====
   - Warm-up (5–10 min):    - Warm-up (5–10 min): 
     - Recall of SI units from Block 01; estimate “How many electrons per second flow at $1~\rm A$?”      - Recall of SI units from Block 01; estimate “How many electrons per second flow at $1~\rm A$?” 
Zeile 24: Zeile 40:
   - Wrap-up (5 min): Summary and pitfalls.   - Wrap-up (5 min): Summary and pitfalls.
  
-====Conceptual overview =====+==== 2.0.4 Conceptual Overview ====
 <callout icon="fa fa-lightbulb-o" color="blue"> <callout icon="fa fa-lightbulb-o" color="blue">
   - **Charge $Q$** is the fundamental “substance” of electricity, always in multiples of the elementary charge.     - **Charge $Q$** is the fundamental “substance” of electricity, always in multiples of the elementary charge.  
Zeile 35: Zeile 51:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-===== Core content =====+===== 2.1 Core Content =====
  
-==== Electric charge ====+==== 2.1.1 Electric Charge ====
  
 <WRAP right> <WRAP right>
Zeile 70: Zeile 86:
 </panel> </panel>
  
-==== Electric current ====+==== 2.1.2 Electric Current ====
 An **electric current** arises when charges move in a preferred direction, e.g. by attraction and repulsion.  An **electric current** arises when charges move in a preferred direction, e.g. by attraction and repulsion. 
 The current is defined as  The current is defined as 
Zeile 107: Zeile 123:
 </panel> </panel>
  
-==== Electrodes ====+==== 2.1.3 Electrodes ====
 An electrode is a connection (or pin) of an electrical component. \\ An electrode is a connection (or pin) of an electrical component. \\
 Looking at a component, the electrode is characterized as the homogenous part of the component, where the charges come in / move out (usually made out of metal). \\ Looking at a component, the electrode is characterized as the homogenous part of the component, where the charges come in / move out (usually made out of metal). \\
Zeile 124: Zeile 140:
  
  
-==== Electric voltage ====+==== 2.1.4 Electric Voltage ====
  
 Every rock on a mountain has a higher energy potential than a rock in the valley. As higher up and as more mass the rock has, as more energy is stored. The energy difference $\Delta W_{1,2}$ is given by the height difference $\Delta h_{1,2}$ Every rock on a mountain has a higher energy potential than a rock in the valley. As higher up and as more mass the rock has, as more energy is stored. The energy difference $\Delta W_{1,2}$ is given by the height difference $\Delta h_{1,2}$
Zeile 149: Zeile 165:
  
   * **Units:** $[U]=[W]/[Q]=1~{\rm J}/1~{\rm C}=1~{\rm V}$.   * **Units:** $[U]=[W]/[Q]=1~{\rm J}/1~{\rm C}=1~{\rm V}$.
-  * **Reference:** We choose one node as potential zero (“ground”); only differences are meaningful. :contentReference[oaicite:13]{index=13} +  * **Reference:** We choose one node as potential zero (“ground”); only differences are meaningful. 
-  * **Examples:**  + 
-    - Thermal noise $\sim \mu{\rm V}$ +<panel type="info" title="Typical voltage magnitudes"> 
-    Microcontroller supply $1.8~{\rm V}$ +  * Thermal noise$\sim \mu{\rm V}$ 
-    Mains $230~{\rm V}$ +  Microcontrollersupply $1.8~{\rm V}$ to  $5.0~{\rm V}$ (often given as ''1V8'' and ''5V0'' or in general as ''VCC'' or ''VDD'') 
-    Lightning $>10^6~{\rm V}$+  Mains$230~{\rm V}$ 
 +  Lightning$>10^6~{\rm V}$ 
 +</panel>
  
 <panel type="info" title="Example / micro-exercise"> <panel type="info" title="Example / micro-exercise">
Zeile 162: Zeile 180:
  
  
-==== Comparison: Mechanics vs Electrics ====+==== 2.1.5 Comparison: Mechanics vs Electrics ====
  
 <WRAP group><WRAP half column> <WRAP group><WRAP half column>
Zeile 204: Zeile 222:
 </WRAP> </WRAP>
  
-===== Common pitfalls =====+===== 2.2 Common Pitfalls =====
   * Mixing electron flow vs. conventional current.     * Mixing electron flow vs. conventional current.  
   * Misinterpreting current as “speed” rather than rate of charge flow.   * Misinterpreting current as “speed” rather than rate of charge flow.
   * Given the definition, rechargeable batteries not have a fixed cathode / anode. Here, usually discharging the battery is considered.   * Given the definition, rechargeable batteries not have a fixed cathode / anode. Here, usually discharging the battery is considered.
  
-===== Exercises =====+===== 2.3 Exercises =====
  
 {{tagtopic>chapter1_2&nodate&nouser&noheader&nofooter&order=custom}} {{tagtopic>chapter1_2&nodate&nouser&noheader&nofooter&order=custom}}
 +
 +
 +#@TaskTitle_HTML@#1.5.1 Direction of the voltage 
 +#@TaskText_HTML@#
 +
 +<WRAP>
 +<imgcaption BildNr21 | Example of conventional voltage specification>
 +</imgcaption>
 +{{drawio>BeispKonventionelleSpannungsangabe.svg}}
 +</WRAP>
 +
 +Explain whether the voltages $U_{\rm Batt}$, $U_{12}$ and $U_{21}$ in <imgref BildNr21> are positive or negative according to the voltage definition.
 +
 +#@HiddenBegin_HTML~1,Hints~@#
 +  * Which terminal has the higher potential? 
 +  * From where to where does the arrow point? 
 +#@HiddenEnd_HTML~1,Hints~@#
 +
 +
 +#@HiddenBegin_HTML~2,Result~@#
 +  * ''+'' is the higher potential. Terminal 1 has the higher potential. $\varphi_1 > \varphi_2$
 +  * For $U_{\rm Batt}$: The arrow starts at terminal 1 and ends at terminal 2. So $U_{\rm Batt}=U_{12}>0$
 +  * $U_{21}<0$
 +#@HiddenEnd_HTML~1l2,Result~@#
 +
 +#@TaskEnd_HTML@#
 +
  
 <panel type="info" title="Task 2.1: Counting charges in a current">  <panel type="info" title="Task 2.1: Counting charges in a current">