Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_and_electronics_1:block07 [2025/10/17 22:20] – mexleadmin | electrical_engineering_and_electronics_1:block07 [2025/11/05 03:08] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 35: | Zeile 35: | ||
| <callout icon=" | <callout icon=" | ||
| - Real sources are modeled by an **ideal source** plus **internal resistance** $R_{\rm i}$; the terminal voltage **drops under load**. | - Real sources are modeled by an **ideal source** plus **internal resistance** $R_{\rm i}$; the terminal voltage **drops under load**. | ||
| - | - **Efficiency** $\eta$ compares *delivered* to *drawn* power. In the simple DC source–load case, $\displaystyle \eta=\frac{R_{\rm L}}{R_{\rm L}+R_{\rm i}}$ (dimensionless). High-efficiency design wants $R_{\rm L}\gg R_{\rm i}$. | + | - **Efficiency** $\eta$ compares |
| - **Utilization rate** $\varepsilon$ compares delivered power to the **maximum** available from the ideal source: $\displaystyle \varepsilon=\frac{R_{\rm L}R_{\rm i}}{(R_{\rm L}+R_{\rm i})^2}$. It peaks at $R_{\rm L}=R_{\rm i}$ with $\varepsilon_{\max}=25~\%$. This is the **maximum power transfer** condition. | - **Utilization rate** $\varepsilon$ compares delivered power to the **maximum** available from the ideal source: $\displaystyle \varepsilon=\frac{R_{\rm L}R_{\rm i}}{(R_{\rm L}+R_{\rm i})^2}$. It peaks at $R_{\rm L}=R_{\rm i}$ with $\varepsilon_{\max}=25~\%$. This is the **maximum power transfer** condition. | ||
| - Different goals → different $R_{\rm L}$: | - Different goals → different $R_{\rm L}$: | ||
| Zeile 108: | Zeile 108: | ||
| Application: | Application: | ||
| - In __power engineering__ $\eta \rightarrow 100\%$ is often desired: We want the maximum power output with the lowest losses at the internal resistance of the source. Thus, the internal resistance of the source should be low compared to the load $R_{\rm L} \gg R_{\rm i} $. | - In __power engineering__ $\eta \rightarrow 100\%$ is often desired: We want the maximum power output with the lowest losses at the internal resistance of the source. Thus, the internal resistance of the source should be low compared to the load $R_{\rm L} \gg R_{\rm i} $. | ||
| + | |||
| + | ==== The Utilization Rate ==== | ||
| The **utilization rate** | The **utilization rate** | ||
| Zeile 119: | Zeile 121: | ||
| = {{R_{\rm L}} \over {(R_{\rm L}+R_{\rm i})}}\cdot {{R_{\rm i}} \over {(R_{\rm L}+R_{\rm i})}}} | = {{R_{\rm L}} \over {(R_{\rm L}+R_{\rm i})}}\cdot {{R_{\rm i}} \over {(R_{\rm L}+R_{\rm i})}}} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| - | ==== The Utilization Rate ==== | ||
| In other applications, | In other applications, | ||
| Application: | Application: | ||
| - | - In __communications engineering__ the impedance matching of the source (the antenna) and the load (the signal-acquiring microcontroller) uses resistors, capacitors, and inductors. | + | - In __communications engineering__ the impedance matching of the source (the antenna) and the load (the signal-acquiring microcontroller) uses resistors, capacitors, and inductors. |
| - Furthermore, | - Furthermore, | ||
| Zeile 178: | Zeile 178: | ||
| A source has $U_0=9.0~\rm V$, $R_{\rm i}=1.0~\Omega$. | A source has $U_0=9.0~\rm V$, $R_{\rm i}=1.0~\Omega$. | ||
| - (a) Choose $R_{\rm L}=9.0~\Omega$. Compute $I_{\rm L}$, $U_{\rm L}$, $P_{\rm L}$, $\eta$, $\varepsilon$. | - (a) Choose $R_{\rm L}=9.0~\Omega$. Compute $I_{\rm L}$, $U_{\rm L}$, $P_{\rm L}$, $\eta$, $\varepsilon$. | ||
| - | - (b) Choose $R_{\rm L}=1.0~\Omega$. Repeat. Which choice maximizes $P_{\rm L}$? Which yields higher $\eta$? | + | - (b) Choose $R_{\rm L}=1.0~\Omega$. Repeat. |
| **Strategy: | **Strategy: | ||
| </ | </ | ||