| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung |
| electrical_engineering_and_electronics_1:block07 [2025/10/17 22:20] – mexleadmin | electrical_engineering_and_electronics_1:block07 [2026/01/10 13:18] (aktuell) – mexleadmin |
|---|
| ====== Block 07 — Power-relevant figures ====== | ====== Block 07 — Power-relevant Figures ====== |
| |
| ===== Learning objectives ===== | ===== 7.0 Intro ===== |
| | |
| | ==== 7.0.1 Learning Objectives ==== |
| <callout> | <callout> |
| * Define and compute **input/output power**, **losses**, **efficiency** $\eta$ and **utilization rate** $\varepsilon$ for DC sources and loads. | * Define and compute **input/output power**, **losses**, **efficiency** $\eta$ and **utilization rate** $\varepsilon$ for DC sources and loads. |
| |
| ~~PAGEBREAK~~ ~~CLEARFIX~~ | ~~PAGEBREAK~~ ~~CLEARFIX~~ |
| ===== Preparation at Home ===== | ==== 7.0.2 Preparation at Home ==== |
| |
| And again: | And again: |
| |
| ~~PAGEBREAK~~ ~~CLEARFIX~~ | ~~PAGEBREAK~~ ~~CLEARFIX~~ |
| ===== 90-minute plan ===== | ==== 7.0.3 90-minute plan ==== |
| - Warm-up (8 min): recall passive/active sign convention; quick unit check for $P=U\cdot I$. | - Warm-up (8 min): recall passive/active sign convention; quick unit check for $P=U\cdot I$. |
| - Core concepts (35 min): real source model; definitions of $\eta$ and $\varepsilon$; design goals; chain efficiency. | - Core concepts (35 min): real source model; definitions of $\eta$ and $\varepsilon$; design goals; chain efficiency. |
| - Wrap-up (5 min): summary + pitfalls. | - Wrap-up (5 min): summary + pitfalls. |
| |
| ===== Conceptual overview ===== | ==== 7.0.4 Conceptual Overview ==== |
| <callout icon="fa fa-lightbulb-o" color="blue"> | <callout icon="fa fa-lightbulb-o" color="blue"> |
| - Real sources are modeled by an **ideal source** plus **internal resistance** $R_{\rm i}$; the terminal voltage **drops under load**. | - Real sources are modeled by an **ideal source** plus **internal resistance** $R_{\rm i}$; the terminal voltage **drops under load**. |
| - **Efficiency** $\eta$ compares *delivered* to *drawn* power. In the simple DC source–load case, $\displaystyle \eta=\frac{R_{\rm L}}{R_{\rm L}+R_{\rm i}}$ (dimensionless). High-efficiency design wants $R_{\rm L}\gg R_{\rm i}$. | - **Efficiency** $\eta$ compares **delivered** to **drawn** power. In the simple DC source–load case, $\displaystyle \eta=\frac{R_{\rm L}}{R_{\rm L}+R_{\rm i}}$ (dimensionless). High-efficiency design wants $R_{\rm L}\gg R_{\rm i}$. |
| - **Utilization rate** $\varepsilon$ compares delivered power to the **maximum** available from the ideal source: $\displaystyle \varepsilon=\frac{R_{\rm L}R_{\rm i}}{(R_{\rm L}+R_{\rm i})^2}$. It peaks at $R_{\rm L}=R_{\rm i}$ with $\varepsilon_{\max}=25~\%$. This is the **maximum power transfer** condition. | - **Utilization rate** $\varepsilon$ compares delivered power to the **maximum** available from the ideal source: $\displaystyle \varepsilon=\frac{R_{\rm L}R_{\rm i}}{(R_{\rm L}+R_{\rm i})^2}$. It peaks at $R_{\rm L}=R_{\rm i}$ with $\varepsilon_{\max}=25~\%$. This is the **maximum power transfer** condition. |
| - Different goals → different $R_{\rm L}$: | - Different goals → different $R_{\rm L}$: |
| |
| ~~PAGEBREAK~~ ~~CLEARFIX~~ | ~~PAGEBREAK~~ ~~CLEARFIX~~ |
| ===== Core content ===== | ===== 7.1 Core Content ===== |
| |
| ==== Power Measurement ==== | ==== 7.1.1 Power Measurement ==== |
| |
| First, it is necessary to consider how to determine the power. The power meter (or wattmeter) consists of a combined ammeter and voltmeter. | First, it is necessary to consider how to determine the power. The power meter (or wattmeter) consists of a combined ammeter and voltmeter. |
| ~~PAGEBREAK~~ ~~CLEARFIX~~ | ~~PAGEBREAK~~ ~~CLEARFIX~~ |
| |
| ==== Power and Characteristics in Diagrams ==== | ==== 7.1.2 Power and Characteristics in Diagrams ==== |
| |
| The simulation in <imgref imageNo13 > shows the following: | The simulation in <imgref imageNo13 > shows the following: |
| The whole context can be investigated in this [[https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgzCAMB0mQrFaB2MAOAnAgbJDmxJt4BGEeDckAFgngFMBaEkgKADcRGNsuAmeL25Cw8PlAnVIVabOjxWAJxDZqXUeJJ806sRJJxIrAO4gSyEXr6QdjDVCXhr652GeMBvaQaOm30jz41a1s+IIdTElx+cKiYtV8uHnikoU8HZTC1OysbXXE5QzY+LRBkxlUzUuZtCQhrQzgAKgAKAENGACMASlbOxgBjbpMnAPt0bPtE-xSJlKMAczMMcTtNFa442VZrZGXVypINxjRpNQAFAH0AGVZOzb4RDEoSakpmNDIje+wyYRAwtIwF5WAAPB6IRhSSjUIRSXhqEg6AA2AEsAHb0NqKAA6AGcAGoAe2RABc2gt6PiAMpEgCuigG9DBmzAe2YeTsAQMiEROjapPxpIAFlS8bSGUyRuZLJpajkCiMQikogEsg4AA7gNCTPRzQKIiTTdzjE3OIxs6TaWymsZ6L4RUb8QROg0OcGMZB-bTsij8HU0Mw6ACqLMY8HZ2lWpH4yBhZkV4JYk1ijxcZD5IAASiySIR1EizG4C7yEyBUSztGk0Ig+Ph-eJMznwYQ1adwERY3tEeJbuCpJH69Q8-wMKXSn3wBgIFyIFJIa3A4XQy2DOpkGowHE7F6l72WYQZ+ggZy2d2gyAAJKsS0ufIqXWaI1hvPsvNA2xac+F85E4z0XE8QAWSxPEGXoABbeh0VJPE7lZdkx21cA9iMXYJAqBIuHbC5LmpVgljGApNi8BwSlWcpKhOblaiBAFGmadoul6JihkcNZ7yhG09EKOA2FMf4FS4ahuMVSI0nCQT1TQ0o+GQVYRIBNBP1KK0QE6AB6docQ1GBIBIYYlmBT9eGMsxSLQyA9jMriaDgYSdDUehyXgoI-mSYdTJBcE3M2KyaC3Py1EzABhNpkQGOlkQFVEiXRfEiQAM3xABRRLEtRAZUWggYAE8CNSFIpLybYln+AJki2Mj-LkhSdFqrhKlw-ClmSaRKosnZ-PKYt5LvNRADHgPhGC6vZKLUPrMMDIadKVZT73VITLL2BrmF4Vbi1wycqIMHQSHgbIeSXflBTxEUxWuIk2gAE1GgFJPsIIxmBabhru5UhKRSZqGCkAZo1O7BJ29wmr+khZvQwTixqIjppIEbIcUoSprsF7BvBgHIeh+w1vUNGwZGj0I3UNA0iPbBHLLX9-1xHF0RAto8WgSt7LsDAyD4MBJlQPcQGpgCcTphmmdYIkAQfSQokbaBnlluX5YwJg4hIJXUPF8QIEvFpg26fFzmRIlSVFmhDWkUFPn03gSGgAQkDIDmkFWCwTfAJAEAkNKMqynLcvxZy2mNl6HXNgw4kQGAHafT0reIv5nYlRkxX5wCrmpfEWgWRR6Gg3W8TadFrvxS6br1v8BbxK5rnTrPruGdBXYAMQdHw7NZshrkZ0ljFRa6ALO-PC7xLMblYIA|Simulation with a resistor]] or [[https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgzCAMB0lw7ADgIwCYCsVrOWMyAWRA9MSANnMVXInUREwLoFMBaHAKADcQ2BOcnwxCBosOlRRpBSI2lyY6TgCcQ5AnwlS0DNtunI4kTgHcQyeOMkhUkPQZNqNctqkRyXw5ELlGT5mB2wqiadnqooVBmFuSukZo+IZoBfILJaaIi0WoJWjbh+VKKsHDInKhoIOlsGhZVHO7SEHbGcABUABQAhmwARgCUXX1sAMYDMUGuBmDERdGBwW5Rs5rLKZwA5hb8Uvo6u3xJihWQ8Dt7dciHbB4gmgAKAPoAMpx9RzRa-PwWBL8cFDRD7kZCZWzBMC+TgAD0+mDYsl+BFEsiEiQYABsAJYAOxY3RUAB0AM4ANQA9piAC7dTYsUkAZQpAFcVKMWLCjmBzhx7FpXEYmBYGN1qaTqQALBkk5lsjkxSzWHRNfQ2VKFdaxeJREwAB3AczVUlWGQgfkmSxmVsgGx5cncDhsU3mYIdlvi8BNSzyJjhbHgYLciF56AB7k0GJAAFUuWx0Lz3Ht0EHUPBkRZilycGsgokvvswVGAErZshaZAMXB7fDCqrYrl4PbuTBgAhrJP3EUgUtwttZO4GNzwc75kBvOGyRP8BgEXDCfh1qQT8D8CD6SAQWQIshyKOxvtGLTwTT4cSBrtVFdkdezORkBwjy8MACSnHtWhrNjqxos0lQca4LyuD3noaCjt2DwUqYLDEiSACyBIkmyLAALYsLi1Iku83K8ouhrgOcJh2ERfB1K4dyPE8jJbNI+x0cc0SVHsNQ-ncjQMPethtB0PT9EMfHjKon7zIiTrFFgxjlOYYiiUQ8ypEkWqyVqxFVGmezyY6RxVA6IB9AA9D0RJ6jAkDIBM2xQmBQjWbECinOcdlifccB8PJmgsLSOGhEG6RzrZ0Jwr5RxnPc+ChZG3YAMLdJiowspiYrYhSuKkhSABmpIAKIZRl2KjNiGGjAAnrRKl5BV-InNssmuOkjHEWFGnuQwLW1FFzw0ds6RyA1vhMWFNRBCAXoiZogBjwKgbCOdUoh1GNHVdlNJkxNpv6VY4s3tUk7UjVRK4-kYVboGsQrPiAYoStKpIvBS3QACbbVEG2yFoULLdN238r+la5u2n2rSR4JLY0rh1JNyBA2FKkjWD40gBNyAzcDLm-gGNYA5D0O8nDQ5KXg6KI8jcYJloiBZLeVCXlIUEwcSRK4oh3QktA2b4foIYQgCUIZlUdOwUSjPM6znAZbYiARJL4A+tLI3INAmBmQBxYS1LbVvcGnF-sEMAtAo2Bhsgp38MwkC7JwFK2OoKQgDCKCQDYBDQD8rtu+7-DsEkyBe6RxSK-+4CSZAEkvp00YDKSDyYhS1KW-ciTSPbRgPUICuhB7meexwae+zrWBuowfvSLl+WFcVJWkl53TxzoScO6n8gwGCUj+0rmYG+3erQYLJKpddMox4974MBAABihf+K5bkcOOLPUqY2IPbBJK0riD2ksWrycEAA|this one with a variable load]]. | The whole context can be investigated in this [[https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgzCAMB0mQrFaB2MAOAnAgbJDmxJt4BGEeDckAFgngFMBaEkgKADcRGNsuAmeL25Cw8PlAnVIVabOjxWAJxDZqXUeJJ806sRJJxIrAO4gSyEXr6QdjDVCXhr652GeMBvaQaOm30jz41a1s+IIdTElx+cKiYtV8uHnikoU8HZTC1OysbXXE5QzY+LRBkxlUzUuZtCQhrQzgAKgAKAENGACMASlbOxgBjbpMnAPt0bPtE-xSJlKMAczMMcTtNFa442VZrZGXVypINxjRpNQAFAH0AGVZOzb4RDEoSakpmNDIje+wyYRAwtIwF5WAAPB6IRhSSjUIRSXhqEg6AA2AEsAHb0NqKAA6AGcAGoAe2RABc2gt6PiAMpEgCuigG9DBmzAe2YeTsAQMiEROjapPxpIAFlS8bSGUyRuZLJpajkCiMQikogEsg4AA7gNCTPRzQKIiTTdzjE3OIxs6TaWymsZ6L4RUb8QROg0OcGMZB-bTsij8HU0Mw6ACqLMY8HZ2lWpH4yBhZkV4JYk1ijxcZD5IAASiySIR1EizG4C7yEyBUSztGk0Ig+Ph-eJMznwYQ1adwERY3tEeJbuCpJH69Q8-wMKXSn3wBgIFyIFJIa3A4XQy2DOpkGowHE7F6l72WYQZ+ggZy2d2gyAAJKsS0ufIqXWaI1hvPsvNA2xac+F85E4z0XE8QAWSxPEGXoABbeh0VJPE7lZdkx21cA9iMXYJAqBIuHbC5LmpVgljGApNi8BwSlWcpKhOblaiBAFGmadoul6JihkcNZ7yhG09EKOA2FMf4FS4ahuMVSI0nCQT1TQ0o+GQVYRIBNBP1KK0QE6AB6docQ1GBIBIYYlmBT9eGMsxSLQyA9jMriaDgYSdDUehyXgoI-mSYdTJBcE3M2KyaC3Py1EzABhNpkQGOlkQFVEiXRfEiQAM3xABRRLEtRAZUWggYAE8CNSFIpLybYln+AJki2Mj-LkhSdFqrhKlw-ClmSaRKosnZ-PKYt5LvNRADHgPhGC6vZKLUPrMMDIadKVZT73VITLL2BrmF4Vbi1wycqIMHQSHgbIeSXflBTxEUxWuIk2gAE1GgFJPsIIxmBabhru5UhKRSZqGCkAZo1O7BJ29wmr+khZvQwTixqIjppIEbIcUoSprsF7BvBgHIeh+w1vUNGwZGj0I3UNA0iPbBHLLX9-1xHF0RAto8WgSt7LsDAyD4MBJlQPcQGpgCcTphmmdYIkAQfSQokbaBnlluX5YwJg4hIJXUPF8QIEvFpg26fFzmRIlSVFmhDWkUFPn03gSGgAQkDIDmkFWCwTfAJAEAkNKMqynLcvxZy2mNl6HXNgw4kQGAHafT0reIv5nYlRkxX5wCrmpfEWgWRR6Gg3W8TadFrvxS6br1v8BbxK5rnTrPruGdBXYAMQdHw7NZshrkZ0ljFRa6ALO-PC7xLMblYIA|Simulation with a resistor]] or [[https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgzCAMB0lw7ADgIwCYCsVrOWMyAWRA9MSANnMVXInUREwLoFMBaHAKADcQ2BOcnwxCBosOlRRpBSI2lyY6TgCcQ5AnwlS0DNtunI4kTgHcQyeOMkhUkPQZNqNctqkRyXw5ELlGT5mB2wqiadnqooVBmFuSukZo+IZoBfILJaaIi0WoJWjbh+VKKsHDInKhoIOlsGhZVHO7SEHbGcABUABQAhmwARgCUXX1sAMYDMUGuBmDERdGBwW5Rs5rLKZwA5hb8Uvo6u3xJihWQ8Dt7dciHbB4gmgAKAPoAMpx9RzRa-PwWBL8cFDRD7kZCZWzBMC+TgAD0+mDYsl+BFEsiEiQYABsAJYAOxY3RUAB0AM4ANQA9piAC7dTYsUkAZQpAFcVKMWLCjmBzhx7FpXEYmBYGN1qaTqQALBkk5lsjkxSzWHRNfQ2VKFdaxeJREwAB3AczVUlWGQgfkmSxmVsgGx5cncDhsU3mYIdlvi8BNSzyJjhbHgYLciF56AB7k0GJAAFUuWx0Lz3Ht0EHUPBkRZilycGsgokvvswVGAErZshaZAMXB7fDCqrYrl4PbuTBgAhrJP3EUgUtwttZO4GNzwc75kBvOGyRP8BgEXDCfh1qQT8D8CD6SAQWQIshyKOxvtGLTwTT4cSBrtVFdkdezORkBwjy8MACSnHtWhrNjqxos0lQca4LyuD3noaCjt2DwUqYLDEiSACyBIkmyLAALYsLi1Iku83K8ouhrgOcJh2ERfB1K4dyPE8jJbNI+x0cc0SVHsNQ-ncjQMPethtB0PT9EMfHjKon7zIiTrFFgxjlOYYiiUQ8ypEkWqyVqxFVGmezyY6RxVA6IB9AA9D0RJ6jAkDIBM2xQmBQjWbECinOcdlifccB8PJmgsLSOGhEG6RzrZ0Jwr5RxnPc+ChZG3YAMLdJiowspiYrYhSuKkhSABmpIAKIZRl2KjNiGGjAAnrRKl5BV-InNssmuOkjHEWFGnuQwLW1FFzw0ds6RyA1vhMWFNRBCAXoiZogBjwKgbCOdUoh1GNHVdlNJkxNpv6VY4s3tUk7UjVRK4-kYVboGsQrPiAYoStKpIvBS3QACbbVEG2yFoULLdN238r+la5u2n2rSR4JLY0rh1JNyBA2FKkjWD40gBNyAzcDLm-gGNYA5D0O8nDQ5KXg6KI8jcYJloiBZLeVCXlIUEwcSRK4oh3QktA2b4foIYQgCUIZlUdOwUSjPM6znAZbYiARJL4A+tLI3INAmBmQBxYS1LbVvcGnF-sEMAtAo2Bhsgp38MwkC7JwFK2OoKQgDCKCQDYBDQD8rtu+7-DsEkyBe6RxSK-+4CSZAEkvp00YDKSDyYhS1KW-ciTSPbRgPUICuhB7meexwae+zrWBuowfvSLl+WFcVJWkl53TxzoScO6n8gwGCUj+0rmYG+3erQYLJKpddMox4974MBAABihf+K5bkcOOLPUqY2IPbBJK0riD2ksWrycEAA|this one with a variable load]]. |
| |
| ==== The Efficiency ==== | ==== 7.1.3 The Efficiency ==== |
| |
| To understand the lower diagram in <imgref imageNo14 >, the definition equations of the two reference quantities shall be described here again: | To understand the lower diagram in <imgref imageNo14 >, the definition equations of the two reference quantities shall be described here again: |
| Application: | Application: |
| - In __power engineering__ $\eta \rightarrow 100\%$ is often desired: We want the maximum power output with the lowest losses at the internal resistance of the source. Thus, the internal resistance of the source should be low compared to the load $R_{\rm L} \gg R_{\rm i} $. | - In __power engineering__ $\eta \rightarrow 100\%$ is often desired: We want the maximum power output with the lowest losses at the internal resistance of the source. Thus, the internal resistance of the source should be low compared to the load $R_{\rm L} \gg R_{\rm i} $. |
| | |
| | ==== 7.1.4 The Utilization Rate ==== |
| |
| The **utilization rate** $\varepsilon$ describes the delivered power $P_{\rm out}$ concerning the maximum possible power $P_{\rm in, max}$ of the ideal source. | The **utilization rate** $\varepsilon$ describes the delivered power $P_{\rm out}$ concerning the maximum possible power $P_{\rm in, max}$ of the ideal source. |
| = {{R_{\rm L}} \over {(R_{\rm L}+R_{\rm i})}}\cdot {{R_{\rm i}} \over {(R_{\rm L}+R_{\rm i})}}} | = {{R_{\rm L}} \over {(R_{\rm L}+R_{\rm i})}}\cdot {{R_{\rm i}} \over {(R_{\rm L}+R_{\rm i})}}} |
| \end{align*} | \end{align*} |
| |
| ==== The Utilization Rate ==== | |
| |
| In other applications, the **absolute maximum power** has to be taken from the source, without consideration of the losses via the internal resistance. This corresponds to the situation (2.) in <imgref imageNo14>. For this purpose, the internal resistance of the source and the load are matched. This case is called **{{https://en.wikipedia.org/wiki/Impedance_matching|impedance matching}} ** (the impedance is up to for DC circuits equal to the resistance). The utilization rate here becomes maximum: $\varepsilon = 25~\%$. | In other applications, the **absolute maximum power** has to be taken from the source, without consideration of the losses via the internal resistance. This corresponds to the situation (2.) in <imgref imageNo14>. For this purpose, the internal resistance of the source and the load are matched. This case is called **{{https://en.wikipedia.org/wiki/Impedance_matching|impedance matching}} ** (the impedance is up to for DC circuits equal to the resistance). The utilization rate here becomes maximum: $\varepsilon = 25~\%$. |
| |
| Application: | Application: |
| - In __communications engineering__ the impedance matching of the source (the antenna) and the load (the signal-acquiring microcontroller) uses resistors, capacitors, and inductors. There, we want to get the maximum power out of an antenna. For this purpose, the internal resistance of the source (e.g., a receiver) and the load (e.g., the downstream evaluation) are matched. An example can be seen in this {{electrical_engineering_1:anp084a_en_-_impedance_matching_for_near_field_com.pdf#page=4|application note for near field communication}}. | - In __communications engineering__ the impedance matching of the source (the antenna) and the load (the signal-acquiring microcontroller) uses resistors, capacitors, and inductors. There, we want to get the maximum power out of an antenna. For this purpose, the internal resistance of the source (e.g., a receiver) and the load (e.g., the downstream evaluation) are matched. An example can be seen in this {{anp084a_en_-_impedance_matching_for_near_field_commu.pdf#page=4|application note for near field communication}}. |
| - Furthermore, also for __photovoltaic cells__ one wants to get the maximum power out. In this case, the concept is often called **{{https://en.wikipedia.org/wiki/Maximum_power_point_tracking|Maximum Power Point Tracking (MPPT)}} ** | - Furthermore, also for __photovoltaic cells__ one wants to get the maximum power out. In this case, the concept is often called **{{https://en.wikipedia.org/wiki/Maximum_power_point_tracking|Maximum Power Point Tracking (MPPT)}} ** |
| |
| |
| ~~PAGEBREAK~~ ~~CLEARFIX~~ | ~~PAGEBREAK~~ ~~CLEARFIX~~ |
| ==== Power-flow chains (series stages) ==== | ==== 7.1.5 Power-flow chains (series stages) ==== |
| |
| The usable (= outgoing) $P_{\rm O}$ power of a real system is always smaller than the supplied (incoming) power $P_{\rm I}$. | The usable (= outgoing) $P_{\rm O}$ power of a real system is always smaller than the supplied (incoming) power $P_{\rm I}$. |
| |
| ~~PAGEBREAK~~ ~~CLEARFIX~~ | ~~PAGEBREAK~~ ~~CLEARFIX~~ |
| ===== Exercises ===== | ===== 7.2 Common pitfalls ===== |
| | - Forgetting **units** in intermediate results (always write $x = \text{number} \times \text{unit}$). |
| | - Mixing up **goals**: high $\eta$ vs. high $P_{\rm L}$ lead to **different** $R_{\rm L}$. |
| | - Using **ideal source** formulas for a **real** source (always include $R_{\rm i}$). |
| | - Ignoring the **sign convention** when interpreting $P=U\cdot I$ (source vs. load). |
| | |
| | ===== 7.3 Exercises ===== |
| |
| <panel type="info" title="Exercise 7.1 Efficiency vs. maximum power (match or not?)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> | <panel type="info" title="Exercise 7.1 Efficiency vs. maximum power (match or not?)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> |
| A source has $U_0=9.0~\rm V$, $R_{\rm i}=1.0~\Omega$. | A source has $U_0=9.0~\rm V$, $R_{\rm i}=1.0~\Omega$. |
| - (a) Choose $R_{\rm L}=9.0~\Omega$. Compute $I_{\rm L}$, $U_{\rm L}$, $P_{\rm L}$, $\eta$, $\varepsilon$. | - (a) Choose $R_{\rm L}=9.0~\Omega$. Compute $I_{\rm L}$, $U_{\rm L}$, $P_{\rm L}$, $\eta$, $\varepsilon$. |
| - (b) Choose $R_{\rm L}=1.0~\Omega$. Repeat. Which choice maximizes $P_{\rm L}$? Which yields higher $\eta$? | - (b) Choose $R_{\rm L}=1.0~\Omega$. Repeat. \\ \\ Which choice maximizes $P_{\rm L}$? Which yields higher $\eta$? |
| **Strategy:** use the boxed formulas in this block; for (b) note $R_{\rm L}=R_{\rm i} \Rightarrow \eta=50~\%$. | **Strategy:** use the boxed formulas in this block; for (b) note $R_{\rm L}=R_{\rm i} \Rightarrow \eta=50~\%$. |
| </WRAP></WRAP></panel> | </WRAP></WRAP></panel> |
| |
| #@TaskEnd_HTML@# | #@TaskEnd_HTML@# |
| | |
| | {{page>electrical_engineering_and_electronics:task_w3wf215v2u98ty07_with_calculation&nofooter}} |
| |
| |
| |
| |
| ===== Common pitfalls checklist ===== | |
| - Forgetting **units** in intermediate results (always write $x = \text{number} \times \text{unit}$). | |
| - Mixing up **goals**: high $\eta$ vs. high $P_{\rm L}$ lead to **different** $R_{\rm L}$. | |
| - Using **ideal source** formulas for a **real** source (always include $R_{\rm i}$). | |
| - Ignoring the **sign convention** when interpreting $P=U\cdot I$ (source vs. load). | |
| |
| ~~PAGEBREAK~~ ~~CLEARFIX~~ | ~~PAGEBREAK~~ ~~CLEARFIX~~ |
| |