Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block11 [2025/11/01 00:32] mexleadminelectrical_engineering_and_electronics_1:block11 [2025/11/08 14:27] (aktuell) mexleadmin
Zeile 1: Zeile 1:
-====== Block 11 — Influence and Displacement Field ======+===== Block 11 — Influence and Displacement Field ======
  
 ===== Learning objectives ===== ===== Learning objectives =====
 <callout> <callout>
 After this 90-minute block, you can After this 90-minute block, you can
-  * ... +  * explain **electrostatic induction** on conductors and argue why the interior of a conductor is field-free (Faraday cage). 
-  * Interpret **dielectric strength** $E_0$ (breakdown) and reason about its impact on design limits.+  * distinguish the **electric field strength** $\vec{E}$ from the **electric displacement flux density** $\vec{D}$ and state $ \vec{D} = \varepsilon \vec{E} = \varepsilon_0 \varepsilon_{\rm r}\vec{E}$. 
 +  * apply **Gauss’s law** for the displacement field to simple closed surfaces to relate enclosed charge $Q$ and flux $\oint \vec{D}\cdot {\rm d}\vec{A}$
 +  * determine $E(r)$ for parallel-plate and coaxial geometries starting from $\vec{D}$, then using $\vec{E}=\vec{D}/(\varepsilon_0\varepsilon_{\rm r})$. 
 +  * reason about **surface charge density** $\varrho_A = \Delta Q/\Delta A$ and the normal field at conductor surfaces. 
 +  * use typical **relative permittivities** $\varepsilon_{\rm r}$ to estimate field reduction in dielectrics. 
 +  * interpret **dielectric strength** $E_0$ (breakdown) and reason about its impact on design limits (safe $E$, spacing, material choice).
 </callout> </callout>
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 ===== Preparation at Home ===== ===== Preparation at Home =====
  
Zeile 15: Zeile 21:
  
 For checking your understanding please do the following exercises: For checking your understanding please do the following exercises:
-  * ...+  * 5.4.
 +  * 5.4.4 
 +  * 5.4.5
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 ===== 90-minute plan ===== ===== 90-minute plan =====
-  - Warm-up (min):  +  - Warm-up (10 min): 
-    - ....  +    - One-minute recap quiz (Block 10): equipotentials, field lines. 
-  - Core concepts & derivations (min): +    - Demo: conductor in external field → Faraday cage effect (refer to the embedded sim in this block)
-    - ... +  - Core concepts & derivations (45 min): 
-  - Practice (min): ... +    - Induction on conductors: charge displacement, $E_{\rm inside}=0$, field normal to the surface. 
-  - Wrap-up (min): Summary box; common pitfalls checklist.+    - Polarization of dielectrics; motivation for introducing $\vec{D}$. 
 +    - Definitions: $\vec{D}$, $\vec{E}$, $\varepsilon_0$, $\varepsilon_{\rm r}$; Gauss’s law with closed surface. 
 +    - Worked derivations via $\vec{D}$: 
 +      * Parallel plates: $D=Q/A \;\Rightarrow\; E = D/(\varepsilon_0\varepsilon_{\rm r})$. 
 +      * Coaxial cylinders: $D(r)=Q/(2\pi l r) \;\Rightarrow\; E(r)=D(r)/(\varepsilon_0\varepsilon_{\rm r})$. 
 +    - Material data: typical $\varepsilon_{\rm r}$; concept of **dielectric strength** $E_0$ and safe design margins
 +  - Practice (25 min): 
 +    - Short board tasks using pillbox surfaces to find $\varrho_A$ on a conductor. 
 +    - Mixed-dielectric capacitor slice: split voltages via constant $D$. 
 +    - Guided use of the embedded sims to observe field/equipotential behavior and verify normal field at surfaces
 +  - Wrap-up (10 min): 
 +    - Summary box (key formulas, when to start with $D$ vs. $E$). 
 +    - Common pitfalls checklist and quick self-test questions. 
 +    - Preview to Block 12 (capacitors from field viewpoint).
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 ===== Conceptual overview ===== ===== Conceptual overview =====
 <callout icon="fa fa-lightbulb-o" color="blue"> <callout icon="fa fa-lightbulb-o" color="blue">
-  - ...+  - **Conductors in electrostatics:** free charges move until $E_{\rm inside}=0$; the surface becomes an equipotential and field lines are perpendicular to it\\ Induced charges live on the surface (surface density $\varrho_A$). 
 +  - **Dielectrics (polarization):** bound charges shift slightly → the macroscopic effect is a reduced $E$ compared to vacuum. \\ This motivates $\vec{D}$, which “counts causes” (free/enclosed charge) independent of polarization details. 
 +  - **Displacement field & Gauss’s law:** for any closed surface, the flux of $\vec{D}$ equals the enclosed charge: $Q=\oint \vec{D}\cdot{\rm d}\vec{A}$. \\ Choose the surface to exploit symmetry, get $\vec{D}$ first, then $\vec{E}$ via material law. 
 +  - **Permittivity:** $\varepsilon=\varepsilon_0\varepsilon_{\rm r}$ links $\vec{D}$ and $\vec{E}$. Larger $\varepsilon_{\rm r}$ → smaller $E$ for the same $D$ (same free charge). 
 +  - **Design limit:** when $|E|$ exceeds the **dielectric strength** $E_0$, breakdown occurs → current flows. \\ Safe design keeps $|E|\ll E_0$ by material choice and geometry (spacing, shaping to avoid high curvature).
 </callout> </callout>
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 ===== Core content ===== ===== Core content =====
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 ==== Electric Field inside of a conductor ==== ==== Electric Field inside of a conductor ====
  
Zeile 55: Zeile 84:
 </callout> </callout>
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 ==== Electrostatic Induction ==== ==== Electrostatic Induction ====
  
Zeile 147: Zeile 176:
 </WRAP> </WRAP>
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 ==== Dielectric Constant (Permittivity) ==== ==== Dielectric Constant (Permittivity) ====
  
Zeile 153: Zeile 182:
  
 \begin{align*} \begin{align*}
-{{D}\over{E}} = \varepsilon = \varepsilon_{ \rm r} \cdot \varepsilon_0 \\ +{{D}\over{E}} = \varepsilon = \varepsilon_0 \cdot \varepsilon_{ \rm r} \\ 
-\boxed{D = \varepsilon_{ \rm r} \cdot \varepsilon_0 \cdot E}+\boxed{D = \varepsilon_0 \cdot \varepsilon_{ \rm r} \cdot E}
 \end{align*} \end{align*}
  
Zeile 174: Zeile 203:
 </WRAP> </WRAP>
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 +==== Typical Geometries ====
 +
 +The "new" $D$-field is a nice tool, which helps to derive the $E$-field more easily. \\
 +This shall be shown with the two most common geometries (which are the only one necessary for this course).
 +
 +<WRAP group>
 +<WRAP half column>
 +=== Field of a parallel Plates ===
 +\\
 +  * Nearly all of the field is between the plate (see <imgref ImgNr294> top), when the distance between the plates is much smaller than the width of the plates. \\  → Idealization: all of the field is inside. There is neither a stray field on the side, nor a field on top / below the structure. \\ \\
 +  * All of the $D$-field of the charges is between the plates, and therefore through the area $A$ of the plates (see <imgref ImgNr294> bottom).  \\  → The $D$-Field is given as: $$ D = {{Q}\over{A}}$$
 +  * Given $D = \varepsilon_0 \cdot \varepsilon_{ \rm r} \cdot E$, the eletric field $E$ is: $$  E = {{Q}\over{ \varepsilon_0 \cdot \varepsilon_{ \rm r} \cdot A}} $$\\
 +
 +<imgcaption ImgNr294 | field of parallel plates (field line breaks are not correct)>
 +</imgcaption> <WRAP>
 +{{url>https://www.falstad.com/emstatic/EMStatic.html?rol=$+1+256+128+0+10+348+0.048828125+461%0Ab+0+2+10+30+130+220+134+0%0Ab+0+2+-10+30+110+220+114+0%0A
 + 600,400 noborder}} \\
 +
 +{{drawio>FieldParallelPlates01.svg}}
 +</WRAP></WRAP>
 +<WRAP half column>
 +=== Field of a coaxial cylindrical Plates ===
 +\\
 +  * All of the field is between the plate (see <imgref ImgNr295> top). \\ \\ \\ \\ \\
 +  * All of the $D$-field of the charges on the inner plate penetrates through any cylintrical area $A(l,r) = 2 \pi \cdot l \cdot r$.  \\  → The $D$-Field is given as: $$ D = {{Q}\over{A(l,r)}} = {{Q}\over{2 \pi \cdot l \cdot r}}$$ 
 +  * Again given $D = \varepsilon_0 \cdot \varepsilon_{ \rm r} \cdot E$, the eletric field $E$ is: $$  E = {{Q}\over{ \varepsilon_0 \cdot \varepsilon_{ \rm r} \cdot 2 \pi \cdot l \cdot r}} $$\\
 +
 +<imgcaption ImgNr295 | field of coaxial cylindrical plates >
 +</imgcaption> <WRAP >
 +{{url>https://www.falstad.com/emstatic/EMStatic.html?rol=$+1+256+128+0+10+355+0.048828125+355%0AE+1+2+0+30+30+230+230+40+40+220+220+0%0Ae+1+2+-80+111+111+149+149+0%0A
 + 600,400 noborder}} \\
 +
 +{{drawio>FieldCylPlates01.svg}}
 +</WRAP></WRAP></WRAP>
 +
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 ==== Dielectric strength of dielectrics ==== ==== Dielectric strength of dielectrics ====
  
Zeile 200: Zeile 266:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
 ===== Common pitfalls ===== ===== Common pitfalls =====
-  * ...+  * Mixing up **cause** and **effect**: using $\oint \vec{E}\cdot{\rm d}\vec{A}$ to count chargeUse **$\vec{D}$** for Gauss’s law with charge; convert to $\vec{E}$ only via $\vec{E}=\vec{D}/(\varepsilon_0\varepsilon_{\rm r})$. 
 +  * Forgetting that the **interior of a conductor is field-free** in electrostatics and that $E$ is **normal** to an ideal conducting surface (no tangential $E$ on the surface). 
 +  * Assuming induced charges fill the **volume** of a conductor. They reside on the **surface**; use $\varrho_A$, not a volume density. 
 +  * Ignoring that **$D$ is continuous** in the normal direction across simple dielectric interfaces when no free surface charge is present; consequently, the **electric field changes** with $\varepsilon_{\rm r}$. 
 +  * Treating $\varepsilon_{\rm r}$ as a constant in all contexts. Real materials can be frequency/temperature dependent; here we use low-frequency values as stated. 
 +  * Checking breakdown with voltage only. The limit is on **field** $E$; always relate geometry (e.g., plate spacing, curvature) to $E$ and compare to **$E_0$** with units (e.g., $\,{\rm kV/mm}$).
  
 ===== Exercises ===== ===== Exercises =====
Zeile 257: Zeile 328:
  
 #@HiddenEnd_HTML~1,Result~@# #@HiddenEnd_HTML~1,Result~@#
- 
-</WRAP></WRAP></panel> 
- 
- 
-<panel type="info" title="Task 5.5.1 induced Charges"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
- 
-A plate capacitor with a distance of $d = 2 ~{ \rm cm}$ between the plates and with air as dielectric ($\varepsilon_{ \rm r}=1$) gets charged up to $U = 5~{ \rm kV}$.  
-In between the plates, a thin metal foil with the area $A = 45~{ \rm cm^2}$ is introduced parallel to the plates.  
- 
-Calculate the amount of the displaced charges in the thin metal foil. 
- 
-<button size="xs" type="link" collapse="Loesung_5_5_1_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_5_5_1_Tipps" collapsed="true"> 
-  * What is the strength of the electric field $E$ in the capacitor? 
-  * Calculate the displacement flux density $D$ 
-  * How can the charge $Q$ be derived from $D$? 
-</collapse> 
- 
-<button size="xs" type="link" collapse="Loesung_5_5_1_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_5_1_Endergebnis" collapsed="true"> 
-$Q = 10 ~{ \rm nC}$ 
-</collapse> 
- 
-</WRAP></WRAP></panel> 
- 
- 
-<panel type="info" title="Task 5.5.2 Manipulating a Capacitor I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
- 
-An ideal plate capacitor with a distance of $d_0 = 7 ~{ \rm mm}$ between the plates gets charged up to $U_0 = 190~{ \rm V}$ by an external source.  
-The source gets disconnected. After this, the distance between the plates gets enlarged to $d_1 = 7 ~{ \rm cm}$.  
-  
-  - What happens to the electric field and the voltage? 
-  - How does the situation change (electric field/voltage), when the source is not disconnected? 
- 
-<button size="xs" type="link" collapse="Loesung_5_5_2_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_5_5_2_Tipps" collapsed="true"> 
-  * Consider the displacement flux through a surface around a plate 
-</collapse> 
- 
-<button size="xs" type="link" collapse="Loesung_5_5_2_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_5_2_Endergebnis" collapsed="true"> 
-  - $U_1 = 1.9~{ \rm kV}$, $E_1 = 27~{ \rm kV/m}$  
-  - $U_1 = 190~{ \rm V}$, $E_1 = 2.7~{ \rm kV/m}$  
-</collapse> 
- 
-</WRAP></WRAP></panel> 
- 
- 
-<panel type="info" title="Task 5.5.3 Manipulating a Capacitor II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
- 
-An ideal plate capacitor with a distance of $d_0 = 6 ~{ \rm mm}$ between the plates and with air as dielectric ($\varepsilon_0=1$) is charged to a voltage of $U_0 = 5~{ \rm kV}$.  
-The source remains connected to the capacitor. In the air gap between the plates, a glass plate with $d_{ \rm g} = 4 ~{ \rm mm}$ and $\varepsilon_{ \rm r} = 8$ is introduced parallel to the capacitor plates. 
-  
-1. Calculate the partial voltages on the glas $U_{ \rm g}$ and on the air gap $U_{ \rm a}$. 
- 
-#@HiddenBegin_HTML~1531T,Tipps~@# 
-  * Build a formula for the sum of the voltages first  
-  * How is the voltage related to the electric field of a capacitor? 
-#@HiddenEnd_HTML~1531T,Tipps~@# 
- 
-#@HiddenBegin_HTML~1531P,Path~@# 
- 
-The sum of the voltages across the glass and the air gap gives the total voltage $U_0$, and each individual voltage is given by the $E$-field in the individual material by $E = {{U}\over{d}}$: 
-\begin{align*} 
-U_0 &= U_{\rm g}               + U_{\rm a} \\ 
-    &= E_{\rm g} \cdot d_{\rm g} + E_{\rm a} \cdot d_{\rm a}  
-\end{align*} 
- 
-The displacement field $D$ must be continuous across the different materials since it is only based on the charge $Q$ on the plates. 
-\begin{align*} 
-D_{\rm g}                                            &= D_{\rm a} \\ 
-\varepsilon_0 \varepsilon_{\rm r, g} \cdot E_{\rm g} &= \varepsilon_0  \cdot E_{\rm a}  
-\end{align*} 
- 
-Therefore, we can put $E_\rm a=  \varepsilon_{\rm r, g} \cdot E_\rm g $ into the formula of the total voltage and rearrange to get $E_\rm g$: 
-\begin{align*} 
-U_0 &= E_{\rm g} \cdot d_{\rm g} + \varepsilon_{\rm r, g} \cdot E_{\rm g}  \cdot d_{\rm a} \\ 
-    &= E_{\rm g} \cdot ( d_{\rm g} + \varepsilon_{\rm r, g} \cdot d_{\rm a}) \\ 
- 
-\rightarrow E_{\rm g}  &= {{U_0}\over{d_{\rm g} + \varepsilon_{\rm r, g} \cdot d_{\rm a}}}  
-\end{align*} 
- 
-Since we know that the distance of the air gap is $d_{\rm a} = d_0 - d_{\rm a}$ we can calculate: 
-\begin{align*} 
-E_{\rm g}  &= {{5'000 ~\rm V}\over{0.004 ~{\rm m} + 8 \cdot 0.002 ~{\rm m}}} \\ 
-         &= 250 ~\rm{{kV}\over{m}} 
-\end{align*} 
- 
-By this, the individual voltages can be calculated: 
-\begin{align*} 
-U_{ \rm g} &= E_{\rm g} \cdot d_\rm g &&= 250 ~\rm{{kV}\over{m}} \cdot 0.004~\rm m &= 1 ~{\rm kV}\\ 
-U_{ \rm a} &= U_0 - U_{ \rm g}      &&= 5  ~{\rm kV} - 1 ~{\rm kV}               &= 4 ~{\rm kV}\\ 
- 
-\end{align*} 
-#@HiddenEnd_HTML~1531P,Path~@# 
- 
- 
-#@HiddenBegin_HTML~1531R,Results~@# 
-$U_{ \rm a} = 4~{ \rm kV}$, $U_{ \rm g} = 1 ~{ \rm kV}$  
-#@HiddenEnd_HTML~1531R,Results~@# 
- 
- 
-2. What would be the maximum allowed thickness of a glass plate, when the electric field in the air-gap shall not exceed $E_{ \rm max}=12~{ \rm kV/cm}$? 
- 
-#@HiddenBegin_HTML~1532P,Path~@# 
-Again, we can start with the sum of the voltages across the glass and the air gap, such as the formula we got from the displacement field: $D = \varepsilon_0 \varepsilon_{\rm r, g} \cdot E_{\rm g} = \varepsilon_0  \cdot E_\rm a $. \\ 
-Now we shall eliminate $E_\rm g$, since $E_\rm a$ is given in the question. 
-\begin{align*} 
-U_0 &  E_{\rm g}                               \cdot d_{\rm g} + E_{\rm a} \cdot d_{\rm a} \\ 
-    &= {{E_\rm a}\over{\varepsilon_{\rm r,g}}}   \cdot d_{\rm g} + E_{\rm a} \cdot d_{\rm a} \\ 
-\end{align*} 
- 
-The distance $d_\rm a$ for the air is given by the overall distance $d_0$ and the distance for glass $d_\rm g$:  
-\begin{align*} 
-d_{\rm a} = d_0 - d_{\rm g} 
-\end{align*} 
- 
-This results in: 
-\begin{align*} 
-U_0                      &= {{E_{\rm a}}\over{\varepsilon_{\rm r,g}}} \cdot d_{\rm g} + E_{\rm a} \cdot (d_0 - d_{\rm g}) \\ 
-{{U_0}\over{E_{\rm a} }} &= {{1}\over{\varepsilon_{\rm r,g}}} \cdot d_{\rm g} + d_0 - d_{\rm g} \\ 
-                         &= d_{\rm g} \cdot ({{1}\over{\varepsilon_{\rm r,g}}} - 1) + d_0 \\ 
-d_{\rm g}                &= { { {{U_0}\over{E_{\rm a} }} - d_0 } \over { {{1}\over{\varepsilon_{\rm r,g}}} - 1 } }     &= { { d_0 - {{U_0}\over{E_{\rm a} }} } \over { 1 - {{1}\over{\varepsilon_{\rm r,g}}} } }                    
-\end{align*} 
- 
-With the given values: 
-\begin{align*} 
-d_{\rm g}                &= { { 0.006 {~\rm m} - {{5 {~\rm kV} }\over{ 12 {~\rm kV/cm}}} } \over { 1 - {{1}\over{8}} } }    &= {  {{8}\over{7}} } \left( { 0.006 - {{5 }\over{ 1200}} }  \right)  {~\rm m}                    
-\end{align*} 
-#@HiddenEnd_HTML~1532P,Path~@# 
- 
- 
-#@HiddenBegin_HTML~1532R,Results~@# 
-$d_{ \rm g} = 2.10~{ \rm mm}$ 
-#@HiddenEnd_HTML~1532R,Results~@# 
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>