Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_and_electronics_1:block11 [2025/11/02 16:54] – mexleadmin | electrical_engineering_and_electronics_1:block11 [2025/11/08 14:27] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 21: | Zeile 21: | ||
| For checking your understanding please do the following exercises: | For checking your understanding please do the following exercises: | ||
| - | * ... | + | * 5.4.1 |
| + | * 5.4.4 | ||
| + | * 5.4.5 | ||
| ~~PAGEBREAK~~ ~~CLEARFIX~~ | ~~PAGEBREAK~~ ~~CLEARFIX~~ | ||
| Zeile 326: | Zeile 328: | ||
| # | # | ||
| - | |||
| - | </ | ||
| - | |||
| - | |||
| - | <panel type=" | ||
| - | |||
| - | A plate capacitor with a distance of $d = 2 ~{ \rm cm}$ between the plates and with air as dielectric ($\varepsilon_{ \rm r}=1$) gets charged up to $U = 5~{ \rm kV}$. | ||
| - | In between the plates, a thin metal foil with the area $A = 45~{ \rm cm^2}$ is introduced parallel to the plates. | ||
| - | |||
| - | Calculate the amount of the displaced charges in the thin metal foil. | ||
| - | |||
| - | <button size=" | ||
| - | * What is the strength of the electric field $E$ in the capacitor? | ||
| - | * Calculate the displacement flux density $D$ | ||
| - | * How can the charge $Q$ be derived from $D$? | ||
| - | </ | ||
| - | |||
| - | <button size=" | ||
| - | $Q = 10 ~{ \rm nC}$ | ||
| - | </ | ||
| - | |||
| - | </ | ||
| - | |||
| - | |||
| - | <panel type=" | ||
| - | |||
| - | An ideal plate capacitor with a distance of $d_0 = 7 ~{ \rm mm}$ between the plates gets charged up to $U_0 = 190~{ \rm V}$ by an external source. | ||
| - | The source gets disconnected. After this, the distance between the plates gets enlarged to $d_1 = 7 ~{ \rm cm}$. | ||
| - | |||
| - | - What happens to the electric field and the voltage? | ||
| - | - How does the situation change (electric field/ | ||
| - | |||
| - | <button size=" | ||
| - | * Consider the displacement flux through a surface around a plate | ||
| - | </ | ||
| - | |||
| - | <button size=" | ||
| - | - $U_1 = 1.9~{ \rm kV}$, $E_1 = 27~{ \rm kV/ | ||
| - | - $U_1 = 190~{ \rm V}$, $E_1 = 2.7~{ \rm kV/ | ||
| - | </ | ||
| - | |||
| - | </ | ||
| - | |||
| - | |||
| - | <panel type=" | ||
| - | |||
| - | An ideal plate capacitor with a distance of $d_0 = 6 ~{ \rm mm}$ between the plates and with air as dielectric ($\varepsilon_0=1$) is charged to a voltage of $U_0 = 5~{ \rm kV}$. | ||
| - | The source remains connected to the capacitor. In the air gap between the plates, a glass plate with $d_{ \rm g} = 4 ~{ \rm mm}$ and $\varepsilon_{ \rm r} = 8$ is introduced parallel to the capacitor plates. | ||
| - | |||
| - | 1. Calculate the partial voltages on the glas $U_{ \rm g}$ and on the air gap $U_{ \rm a}$. | ||
| - | |||
| - | # | ||
| - | * Build a formula for the sum of the voltages first | ||
| - | * How is the voltage related to the electric field of a capacitor? | ||
| - | # | ||
| - | |||
| - | # | ||
| - | |||
| - | The sum of the voltages across the glass and the air gap gives the total voltage $U_0$, and each individual voltage is given by the $E$-field in the individual material by $E = {{U}\over{d}}$: | ||
| - | \begin{align*} | ||
| - | U_0 &= U_{\rm g} + U_{\rm a} \\ | ||
| - | &= E_{\rm g} \cdot d_{\rm g} + E_{\rm a} \cdot d_{\rm a} | ||
| - | \end{align*} | ||
| - | |||
| - | The displacement field $D$ must be continuous across the different materials since it is only based on the charge $Q$ on the plates. | ||
| - | \begin{align*} | ||
| - | D_{\rm g} &= D_{\rm a} \\ | ||
| - | \varepsilon_0 \varepsilon_{\rm r, g} \cdot E_{\rm g} &= \varepsilon_0 | ||
| - | \end{align*} | ||
| - | |||
| - | Therefore, we can put $E_\rm a= \varepsilon_{\rm r, g} \cdot E_\rm g $ into the formula of the total voltage and rearrange to get $E_\rm g$: | ||
| - | \begin{align*} | ||
| - | U_0 &= E_{\rm g} \cdot d_{\rm g} + \varepsilon_{\rm r, g} \cdot E_{\rm g} \cdot d_{\rm a} \\ | ||
| - | &= E_{\rm g} \cdot ( d_{\rm g} + \varepsilon_{\rm r, g} \cdot d_{\rm a}) \\ | ||
| - | |||
| - | \rightarrow E_{\rm g} &= {{U_0}\over{d_{\rm g} + \varepsilon_{\rm r, g} \cdot d_{\rm a}}} | ||
| - | \end{align*} | ||
| - | |||
| - | Since we know that the distance of the air gap is $d_{\rm a} = d_0 - d_{\rm a}$ we can calculate: | ||
| - | \begin{align*} | ||
| - | E_{\rm g} &= {{5' | ||
| - | & | ||
| - | \end{align*} | ||
| - | |||
| - | By this, the individual voltages can be calculated: | ||
| - | \begin{align*} | ||
| - | U_{ \rm g} &= E_{\rm g} \cdot d_\rm g &&= 250 ~\rm{{kV}\over{m}} \cdot 0.004~\rm m &= 1 ~{\rm kV}\\ | ||
| - | U_{ \rm a} &= U_0 - U_{ \rm g} &&= 5 ~{\rm kV} - 1 ~{\rm kV} & | ||
| - | |||
| - | \end{align*} | ||
| - | # | ||
| - | |||
| - | |||
| - | # | ||
| - | $U_{ \rm a} = 4~{ \rm kV}$, $U_{ \rm g} = 1 ~{ \rm kV}$ | ||
| - | # | ||
| - | |||
| - | |||
| - | 2. What would be the maximum allowed thickness of a glass plate, when the electric field in the air-gap shall not exceed $E_{ \rm max}=12~{ \rm kV/cm}$? | ||
| - | |||
| - | # | ||
| - | Again, we can start with the sum of the voltages across the glass and the air gap, such as the formula we got from the displacement field: $D = \varepsilon_0 \varepsilon_{\rm r, g} \cdot E_{\rm g} = \varepsilon_0 | ||
| - | Now we shall eliminate $E_\rm g$, since $E_\rm a$ is given in the question. | ||
| - | \begin{align*} | ||
| - | U_0 & | ||
| - | &= {{E_\rm a}\over{\varepsilon_{\rm r, | ||
| - | \end{align*} | ||
| - | |||
| - | The distance $d_\rm a$ for the air is given by the overall distance $d_0$ and the distance for glass $d_\rm g$: | ||
| - | \begin{align*} | ||
| - | d_{\rm a} = d_0 - d_{\rm g} | ||
| - | \end{align*} | ||
| - | |||
| - | This results in: | ||
| - | \begin{align*} | ||
| - | U_0 &= {{E_{\rm a}}\over{\varepsilon_{\rm r,g}}} \cdot d_{\rm g} + E_{\rm a} \cdot (d_0 - d_{\rm g}) \\ | ||
| - | {{U_0}\over{E_{\rm a} }} &= {{1}\over{\varepsilon_{\rm r,g}}} \cdot d_{\rm g} + d_0 - d_{\rm g} \\ | ||
| - | & | ||
| - | d_{\rm g} &= { { {{U_0}\over{E_{\rm a} }} - d_0 } \over { {{1}\over{\varepsilon_{\rm r,g}}} - 1 } } & | ||
| - | \end{align*} | ||
| - | |||
| - | With the given values: | ||
| - | \begin{align*} | ||
| - | d_{\rm g} &= { { 0.006 {~\rm m} - {{5 {~\rm kV} }\over{ 12 {~\rm kV/cm}}} } \over { 1 - {{1}\over{8}} } } &= { {{8}\over{7}} } \left( { 0.006 - {{5 }\over{ 1200}} } \right) | ||
| - | \end{align*} | ||
| - | # | ||
| - | |||
| - | |||
| - | # | ||
| - | $d_{ \rm g} = 2.10~{ \rm mm}$ | ||
| - | # | ||
| </ | </ | ||