Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung | |||
| electrical_engineering_and_electronics_1:block19 [2025/12/02 18:38] – mexleadmin | electrical_engineering_and_electronics_1:block19 [2025/12/02 19:42] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 230: | Zeile 230: | ||
| {{page> | {{page> | ||
| + | <panel type=" | ||
| + | |||
| + | A coil is set up onto a toroidal plastic ring ($\mu_{\rm r}=1$) with an average circumference of $l_R = 300 ~\rm mm$. | ||
| + | The $N=400$ windings are evenly distributed along the circumference. | ||
| + | The diameter on the cross-section of the plastic ring is $d = 10 ~\rm mm$. In the windings, a current of $I=500 ~\rm mA$ is flowing. | ||
| + | |||
| + | Calculate | ||
| + | |||
| + | - the magnetic field strength $H$ in the middle of the ring cross-section. | ||
| + | - the magnetic flux density $B$ in the middle of the ring cross-section. | ||
| + | - the magnetic resistance $R_{\rm m}$ of the plastic ring. | ||
| + | - the magnetic flux $\Phi$. | ||
| + | |||
| + | <button size=" | ||
| + | |||
| + | - $H = 667 ~\rm {{A}\over{m}}$ | ||
| + | - $B = 0.84 ~\rm mT$ | ||
| + | - $R_m = 3 \cdot 10^9 ~\rm {{1}\over{H}}$ | ||
| + | - $\Phi = 66 ~\rm nVs$ | ||
| + | |||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | Calculate the magnetic resistances of cylindrical coreless (=ironless) coils with the following dimensions: | ||
| + | |||
| + | - $l=35.8~\rm cm$, $d=1.90~\rm cm$ | ||
| + | - $l=11.1~\rm cm$, $d=1.50~\rm cm$ | ||
| + | |||
| + | # | ||
| + | |||
| + | The magnetic resistance is given by: | ||
| + | \begin{align*} | ||
| + | \ R_{\rm m} &= {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}} | ||
| + | \end{align*} | ||
| + | |||
| + | With | ||
| + | * the area $ A = \left({{d}\over{2}}\right)^2 \cdot \pi $ | ||
| + | * the vacuum magnetic permeability $\mu_{0}=4\pi\cdot 10^{-7} ~\rm H/m$, and | ||
| + | * the relative permeability $\mu_{\rm r}=1$. | ||
| + | |||
| + | # | ||
| + | |||
| + | # | ||
| + | - $1.00\cdot 10^9 ~\rm {{1}\over{H}}$ | ||
| + | - $0.50\cdot 10^9 ~\rm {{1}\over{H}}$ | ||
| + | # | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | Calculate the magnetic resistances of an airgap with the following dimensions: | ||
| + | |||
| + | - $\delta=0.5~\rm mm$, $A=10.2~\rm cm^2$ | ||
| + | - $\delta=3.0~\rm mm$, $A=11.9~\rm cm^2$ | ||
| + | |||
| + | <button size=" | ||
| + | |||
| + | - $3.9\cdot 10^5 ~\rm {{1}\over{H}}$ | ||
| + | - $2.0\cdot 10^6 ~\rm {{1}\over{H}}$ | ||
| + | |||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | Calculate the magnetic voltage necessary to create a flux of $\Phi=0.5 ~\rm mVs$ in an airgap with the following dimensions: | ||
| + | |||
| + | - $\delta=1.7~\rm mm$, $A=4.5~\rm cm^2$ | ||
| + | - $\delta=5.0~\rm mm$, $A=7.1~\rm cm^2$ | ||
| + | |||
| + | <button size=" | ||
| + | |||
| + | - $\theta = 1.5\cdot 10^3 ~\rm A$, or $1000$ windings with $1.5~\rm A$ | ||
| + | - $\theta = 2.8\cdot 10^3 ~\rm A$, or $1000$ windings with $2.8~\rm A$ | ||
| + | |||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | Calculate the magnetic flux created on a magnetic resistance of $R_m = 2.5 \cdot 10^6 ~\rm {{1}\over{H}}$ with the following magnetic voltages: | ||
| + | |||
| + | - $\theta = 35 ~\rm A$ | ||
| + | - $\theta = 950 ~\rm A$ | ||
| + | - $\theta = 2750 ~\rm A$ | ||
| + | |||
| + | <button size=" | ||
| + | |||
| + | - $\Phi =14 ~\rm µVs$ | ||
| + | - $\Phi =0.38~\rm mVs$ | ||
| + | - $\Phi =1.1 ~\rm mVs$ | ||
| + | |||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A core shall consist of two parts, as seen in <imgref ImgExNr08> | ||
| + | In the coil, with $600$ windings shall pass the current $I=1.30 ~\rm A$. | ||
| + | |||
| + | The cross sections are $A_1=530 ~\rm mm^2$ and $A_2=460 ~\rm mm^2$. | ||
| + | The mean magnetic path lengths are $l_1 = 200 ~\rm mm$ and $l_2 = 130 ~\rm mm$. | ||
| + | |||
| + | The air gaps on the coupling joint between both parts have the length $\delta = 0.23 ~\rm mm$ each. | ||
| + | The permeability of the ferrite is $\mu_r = 3000$. | ||
| + | The cross-section area $A_{\delta}$ of the airgap can be considered the same as $A_2$ | ||
| + | |||
| + | < | ||
| + | |||
| + | - Draw the lumped circuit of the magnetic system | ||
| + | - Calculate all magnetic resistances $R_{\rm m,i}$ | ||
| + | - Calculate the flux in the circuit | ||
| + | |||
| + | <button size=" | ||
| + | |||
| + | - - | ||
| + | - magnetic resistances: | ||
| + | - magnetic flux: $\Phi = 0.80 ~\rm mVs$ | ||
| + | |||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | The magnetic circuit in <imgref ImgExNr09> | ||
| + | At position $\rm A-B$, an air gap will be inserted. After this, the same flux density will be reached with $3.70 ~\rm A$ | ||
| + | |||
| + | < | ||
| + | |||
| + | - Calculate the length of the airgap $\delta$ with the simplification $\mu_{\rm r} \gg 1$ | ||
| + | - Calculate the length of the airgap $\delta$ exactly with $\mu_{\rm r} = 1000$ | ||
| + | |||
| + | <button size=" | ||
| + | |||
| + | - $\delta = 4.02(12) ~\rm mm$ | ||
| + | - $\delta = 4.02(52) ~\rm mm$ | ||
| + | |||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | The choke coil shown in <imgref ImgExNr10> | ||
| + | The number of windings shall be $N$ and the current through a single winding $I$. | ||
| + | |||
| + | < | ||
| + | |||
| + | - Draw the lumped circuit of the magnetic system | ||
| + | - Calculate all magnetic resistances $R_{{\rm m},i}$ | ||
| + | - Calculate the partial fluxes in all the legs of the circuit | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A toroidal core (ferrite, $\mu_{\rm r} = 900$) has a cross-sectional area of $A = 500 ~\rm mm^2$ and an average circumference of $l=280 ~\rm mm$. | ||
| + | At the core, there are two coils $N_1=500$ and $N_2=250$ wound. The currents on the coils are $I_1 = 250 ~\rm mA$ and $I_2=300 ~\rm mA$. | ||
| + | |||
| + | - The coils shall pass the currents with positive polarity (see the image **A** in <imgref ImgEx14> | ||
| + | - The coils shall pass the currents with negative polarity (see the image **B** in <imgref ImgEx14> | ||
| + | |||
| + | < | ||
| + | |||
| + | # | ||
| + | |||
| + | The resulting flux can be derived from a superposition of the individual fluxes $\Phi_1(I_1)$ and $\Phi_2(I_2)$, | ||
| + | |||
| + | **Step 1 - Draw an equivalent magnetic circuit** | ||
| + | |||
| + | Since there are no branches, all of the core can be lumped into a single magnetic resistance (see <imgref ImgEx14circ> | ||
| + | < | ||
| + | |||
| + | **Step 2 - Get the absolute values of the individual fluxes** | ||
| + | |||
| + | Hopkinson' | ||
| + | It connects the magnetic flux $\Phi$ and the magnetic voltage $\theta$ on the single magnetic resistor $R_\rm m$. \\ | ||
| + | It also connects the single magnetic fluxes $\Phi_x$ (with $x = {1,2}$) and the single magnetic voltages $\theta_x$. \\ | ||
| + | |||
| + | \begin{align*} | ||
| + | \theta_x | ||
| + | N_x \cdot I_x &= {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}} \cdot \Phi_x \\ | ||
| + | \rightarrow \Phi_x | ||
| + | = {{1}\over{R_{\rm m} }} \cdot N_x \cdot I_x \\ | ||
| + | \end{align*} | ||
| + | |||
| + | With the given values we get: $R_{\rm m} = 495 {\rm {kA}\over{Vs}}$ | ||
| + | |||
| + | **Step 3 - Get the signs/ | ||
| + | |||
| + | The < | ||
| + | The fluxes have to be added regarding these directions and the given direction of the flux in question. | ||
| + | < | ||
| + | |||
| + | Therefore, the formulas are | ||
| + | \begin{align*} | ||
| + | \Phi_{\rm A} & | ||
| + | & | ||
| + | & = 0.25 ~{\rm mVs} - 0.15 ~{\rm mVs} \\ | ||
| + | \Phi_{\rm B} & | ||
| + | & | ||
| + | & = 0.25 ~{\rm mVs} + 0.15 ~{\rm mVs} | ||
| + | \end{align*} | ||
| + | |||
| + | # | ||
| + | |||
| + | |||
| + | # | ||
| + | - $0.10 ~\rm mVs$ | ||
| + | - $0.40 ~\rm mVs$ | ||
| + | # | ||
| + | |||
| + | </ | ||
| ===== Embedded resources ===== | ===== Embedded resources ===== | ||