Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block19 [2025/12/02 18:38] mexleadminelectrical_engineering_and_electronics_1:block19 [2025/12/02 19:42] (aktuell) mexleadmin
Zeile 230: Zeile 230:
 {{page>electrical_engineering_and_electronics:task_0j7accfimmemytq9_with_calculation&nofooter}} {{page>electrical_engineering_and_electronics:task_0j7accfimmemytq9_with_calculation&nofooter}}
  
 +<panel type="info" title="Exercise 5.1.1 Coil on a plastic Core"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A coil is set up onto a toroidal plastic ring ($\mu_{\rm r}=1$) with an average circumference of $l_R = 300 ~\rm mm$. 
 +The $N=400$ windings are evenly distributed along the circumference. 
 +The diameter on the cross-section of the plastic ring is $d = 10 ~\rm mm$. In the windings, a current of $I=500 ~\rm mA$ is flowing.
 +
 +Calculate
 +
 +  - the magnetic field strength $H$ in the middle of the ring cross-section.
 +  - the magnetic flux density $B$ in the middle of the ring cross-section.
 +  - the magnetic resistance $R_{\rm m}$ of the plastic ring.
 +  - the magnetic flux $\Phi$.
 +
 +<button size="xs" type="link" collapse="Solution_5_1_1_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_1_1_Result" collapsed="true">
 +
 +  - $H = 667 ~\rm {{A}\over{m}}$
 +  - $B = 0.84 ~\rm mT$
 +  - $R_m = 3 \cdot 10^9 ~\rm {{1}\over{H}}$
 +  - $\Phi = 66 ~\rm nVs$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.2 magnetic Resistance of a cylindrical coil"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +Calculate the magnetic resistances of cylindrical coreless (=ironless) coils with the following dimensions:
 +
 +  - $l=35.8~\rm cm$, $d=1.90~\rm cm$
 +  - $l=11.1~\rm cm$, $d=1.50~\rm cm$
 +
 +#@HiddenBegin_HTML~5_1_2s,Solution~@#
 +
 +The magnetic resistance is given by:
 +\begin{align*}
 +\ R_{\rm m} &= {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}} 
 +\end{align*}
 +
 +With
 +  * the area $ A = \left({{d}\over{2}}\right)^2 \cdot \pi $
 +  * the vacuum magnetic permeability $\mu_{0}=4\pi\cdot 10^{-7} ~\rm H/m$, and 
 +  * the relative permeability $\mu_{\rm r}=1$.
 +
 +#@HiddenEnd_HTML~5_1_2s,Solution ~@#
 +
 +#@HiddenBegin_HTML~5_1_2r,Result~@#
 +  - $1.00\cdot 10^9 ~\rm {{1}\over{H}}$
 +  - $0.50\cdot 10^9 ~\rm {{1}\over{H}}$
 +#@HiddenEnd_HTML~5_1_2r,Result~@#
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.3 magnetic Resistance of an airgap"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +Calculate the magnetic resistances of an airgap with the following dimensions:
 +
 +  - $\delta=0.5~\rm mm$, $A=10.2~\rm cm^2$
 +  - $\delta=3.0~\rm mm$, $A=11.9~\rm cm^2$
 +
 +<button size="xs" type="link" collapse="Solution_5_1_3_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_3_1_Result" collapsed="true">
 +
 +  - $3.9\cdot 10^5 ~\rm {{1}\over{H}}$
 +  - $2.0\cdot 10^6 ~\rm {{1}\over{H}}$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.4 Magnetic Voltage"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +Calculate the magnetic voltage necessary to create a flux of $\Phi=0.5 ~\rm mVs$ in an airgap with the following dimensions:
 +
 +  - $\delta=1.7~\rm mm$, $A=4.5~\rm cm^2$
 +  - $\delta=5.0~\rm mm$, $A=7.1~\rm cm^2$
 +
 +<button size="xs" type="link" collapse="Solution_5_1_4_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_4_1_Result" collapsed="true">
 +
 +  - $\theta = 1.5\cdot 10^3 ~\rm A$, or $1000$ windings with $1.5~\rm A$
 +  - $\theta = 2.8\cdot 10^3 ~\rm A$, or $1000$ windings with $2.8~\rm A$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.5 Magnetic Flux"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +Calculate the magnetic flux created on a magnetic resistance of $R_m = 2.5 \cdot 10^6 ~\rm {{1}\over{H}}$ with the following magnetic voltages:
 +
 +  - $\theta = 35   ~\rm A$
 +  - $\theta = 950  ~\rm A$
 +  - $\theta = 2750 ~\rm A$
 +
 +<button size="xs" type="link" collapse="Solution_5_1_5_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_5_1_Result" collapsed="true">
 +
 +  - $\Phi =14  ~\rm µVs$
 +  - $\Phi =0.38~\rm mVs$
 +  - $\Phi =1.1 ~\rm mVs$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.6 Two-parted ferrite Core"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A core shall consist of two parts, as seen in <imgref ImgExNr08>
 +In the coil, with $600$ windings shall pass the current $I=1.30 ~\rm A$.
 +
 +The cross sections are $A_1=530 ~\rm mm^2$ and $A_2=460 ~\rm mm^2$. 
 +The mean magnetic path lengths are $l_1 = 200 ~\rm mm$ and $l_2 = 130 ~\rm mm$.
 +
 +The air gaps on the coupling joint between both parts have the length $\delta = 0.23 ~\rm mm$ each. 
 +The permeability of the ferrite is $\mu_r = 3000$. 
 +The cross-section area $A_{\delta}$ of the airgap can be considered the same as $A_2$
 +
 +<WRAP> <imgcaption ImgExNr08 | Two-parted ferrite Core> </imgcaption> {{drawio>TwoPartedCoil.svg}} </WRAP>
 +
 +  - Draw the lumped circuit of the magnetic system
 +  - Calculate all magnetic resistances $R_{\rm m,i}$
 +  - Calculate the flux in the circuit
 +
 +<button size="xs" type="link" collapse="Solution_5_1_6_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_6_1_Result" collapsed="true">
 +
 +  - -
 +  - magnetic resistances: $R_{\rm m,1} = 100 \cdot 10^3 ~\rm {{1}\over{H}}$, $R_{\rm m,1} = 75 \cdot 10^3 ~\rm {{1}\over{H}}$, $R_{{\rm m},\delta} = 400 \cdot 10^3 ~\rm {{1}\over{H}}$
 +  - magnetic flux: $\Phi = 0.80 ~\rm mVs$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.7 Comparison with simplified Calculation"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +The magnetic circuit in <imgref ImgExNr09> passes a magnetic flux density of $0.4 ~\rm T$ given by an excitation current of $0.50 ~\rm A$ in $400$ windings. 
 +At position $\rm A-B$, an air gap will be inserted. After this, the same flux density will be reached with $3.70 ~\rm A$
 +
 +<WRAP> <imgcaption ImgExNr09 | Example of a magnetic circuit> </imgcaption> {{drawio>ExMagncirc01.svg}} </WRAP>
 +
 +  - Calculate the length of the airgap $\delta$ with the simplification $\mu_{\rm r} \gg 1$
 +  - Calculate the length of the airgap $\delta$ exactly with $\mu_{\rm r} = 1000$
 +
 +<button size="xs" type="link" collapse="Solution_5_1_7_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_7_1_Result" collapsed="true">
 +
 +  - $\delta = 4.02(12) ~\rm mm$
 +  - $\delta = 4.02(52) ~\rm mm$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.1.8 Coil on a ferrite Core with airgap"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +The choke coil shown in <imgref ImgExNr10> shall be given, with a constant cross-section in all legs $l_0$, $l_1$, $l_2$. 
 +The number of windings shall be $N$ and the current through a single winding $I$.
 +
 +<WRAP> <imgcaption ImgExNr10 | Example for a Choke Coil> </imgcaption> {{drawio>ChokeCoilEx1.svg}} </WRAP>
 +
 +  - Draw the lumped circuit of the magnetic system
 +  - Calculate all magnetic resistances $R_{{\rm m},i}$
 +  - Calculate the partial fluxes in all the legs of the circuit
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 5.3.3 toroidal Core with two Coils"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A toroidal core (ferrite, $\mu_{\rm r} = 900$) has a cross-sectional area of $A = 500 ~\rm mm^2$ and an average circumference of $l=280 ~\rm mm$. 
 +At the core, there are two coils $N_1=500$ and $N_2=250$ wound. The currents on the coils are $I_1 = 250 ~\rm mA$ and $I_2=300 ~\rm mA$.
 +
 +  - The coils shall pass the currents with positive polarity (see the image **A** in <imgref ImgEx14>). What is the resulting magnetic flux $\Phi_{\rm A}$ in the coil?
 +  - The coils shall pass the currents with negative polarity (see the image **B** in <imgref ImgEx14>). What is the resulting magnetic flux $\Phi_{\rm B}$ in the coil?
 +
 +<WRAP> <imgcaption ImgEx14 | toroidal core with two coils in positive and negative polarity> </imgcaption> {{drawio>torCoilPosNeg.svg}} </WRAP>
 +
 +#@HiddenBegin_HTML~5_3_2s,Solution~@#
 +
 +The resulting flux can be derived from a superposition of the individual fluxes $\Phi_1(I_1)$ and $\Phi_2(I_2)$, or alternatively by summing the magnetic voltages in the loop ($\sum_x \theta_x = 0$).
 +
 +**Step 1 - Draw an equivalent magnetic circuit**
 +
 +Since there are no branches, all of the core can be lumped into a single magnetic resistance (see <imgref ImgEx14circ>).
 +<WRAP> <imgcaption ImgEx14circ | equivalent magnetic circuit> </imgcaption> {{drawio>torCoilPosNegCirc.svg}} </WRAP>
 +
 +**Step 2 - Get the absolute values of the individual fluxes**
 +
 +Hopkinson's Law can be used here as a starting point. \\
 +It connects the magnetic flux $\Phi$ and the magnetic voltage $\theta$ on the single magnetic resistor $R_\rm m$. \\
 +It also connects the single magnetic fluxes $\Phi_x$ (with $x = {1,2}$) and the single magnetic voltages $\theta_x$. \\
 +
 +\begin{align*} 
 +\theta_x             &= R_{\rm m}                                  \cdot \Phi_x \\
 +N_x \cdot I_x        &= {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}} \cdot \Phi_x \\
 +\rightarrow \Phi_x   &= \mu_0 \mu_{\rm r} {{A}\over{l}} \cdot N_x \cdot I_x 
 +                      = {{1}\over{R_{\rm m} }}          \cdot N_x \cdot I_x \\
 +\end{align*}
 +
 +With the given values we get: $R_{\rm m} = 495 {\rm {kA}\over{Vs}}$
 +
 +**Step 3 - Get the signs/directions of the fluxes**
 +
 +The <imgref5_3_2_Solution> shows how to get the correct direction for every single flux by use of the right-hand rule. \\
 +The fluxes have to be added regarding these directions and the given direction of the flux in question.
 +<WRAP> <imgcaption 5_3_2_Solution| toroidal core with two coils in positive and negative polarity> </imgcaption> {{drawio>torCoilPosNeg_solution.svg}} </WRAP>
 +
 +Therefore, the formulas are
 +\begin{align*} 
 +\Phi_{\rm A}   &= \Phi_{1} - \Phi_{2} \\
 +               &={{1}\over{R_{\rm m} }} \cdot \left( N_1 \cdot I_1  -  N_2 \cdot I_2 \right) \\
 +               & = 0.25 ~{\rm mVs} - 0.15 ~{\rm mVs} \\
 +\Phi_{\rm B}   &= \Phi_{1} + \Phi_{2} \\
 +               &={{1}\over{R_{\rm m} }} \cdot \left( N_1 \cdot I_1  +  N_2 \cdot I_2 \right) \\
 +               & = 0.25 ~{\rm mVs} + 0.15 ~{\rm mVs} 
 +\end{align*}
 +
 +#@HiddenEnd_HTML~5_3_2s,Solution~@#
 +
 +
 +#@HiddenBegin_HTML~5_3_2r,Result~@#
 +  - $0.10 ~\rm mVs$
 +  - $0.40 ~\rm mVs$
 +#@HiddenEnd_HTML~5_3_2r,Result~@#
 +
 +</WRAP></WRAP></panel>
  
 ===== Embedded resources ===== ===== Embedded resources =====