Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
elektrotechnik_1:grundlagen_und_grundbegriffe [2020/10/20 14:30]
tfischer
elektrotechnik_1:grundlagen_und_grundbegriffe [2023/09/19 22:19] (aktuell)
mexleadmin
Zeile 1: Zeile 1:
-====== 1Grundlagen und Grundbegriffe ======+====== 1 Grundlagen und Grundbegriffe ======
  
 ===== 1.1 Physikalische Größen ===== ===== 1.1 Physikalische Größen =====
Zeile 336: Zeile 336:
  
 <WRAP right 50%> <WRAP right 50%>
-Aufbau für eigene Versuche +Aufbau für eigene Versuche \\ 
-{{url>https://phet.colorado.edu/sims/html/charges-and-fields/latest/charges-and-fields_de.html 500,400 noborder}}+{{url>https://phet.colorado.edu/sims/html/charges-and-fields/latest/charges-and-fields_de.html 500,400 noborder}} \\
 Nehmen Sie eine Ladung ($+1nC$) und positionieren Sie diese. Messen Sie das Feld über eine Probeladung (einen Sensor) aus. Nehmen Sie eine Ladung ($+1nC$) und positionieren Sie diese. Messen Sie das Feld über eine Probeladung (einen Sensor) aus.
  
Zeile 354: Zeile 354:
   * Proportionalitätsfaktor $a$   * Proportionalitätsfaktor $a$
     * Der Proportionalitätsfaktor $a$ wird so definiert, dass sich in der Elektrodynamik einfachere Beziehungen entstehen.      * Der Proportionalitätsfaktor $a$ wird so definiert, dass sich in der Elektrodynamik einfachere Beziehungen entstehen. 
-    * $a$ wird damit zu: \\ $a = {{1} \over {4\pi\cdot\varepsilon_0}}$ +    * $a$ wird damit zu: \\ $a = {{1} \over {4\pi\cdot\varepsilon}}$ 
-    * $\varepsilon_0$ ist die {{wpde>Elektrische Feldkonstante}}. +    * $\varepsilon_0$ ist die {{wpde>Elektrische Feldkonstante}}. Im Vakuum wird $\varepsilon_0 = \varepsilon$
   * Die Formel ähnelt derjenigen der Gravitationskraft: $F_G = {\gamma \cdot {{m_1 \cdot m_2} \over {r^2}}}$   * Die Formel ähnelt derjenigen der Gravitationskraft: $F_G = {\gamma \cdot {{m_1 \cdot m_2} \over {r^2}}}$
  
  
 <callout icon="fa fa-exclamation" color="red" title="Merke:"> <callout icon="fa fa-exclamation" color="red" title="Merke:">
-Die Coulombkraft lässt sich berechnen über \\ $\boxed{ F_C = {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {r^2}}}}$ \\+Die Coulombkraft (im Vakuum) lässt sich berechnen über \\ $\boxed{ F_C = {{{1} \over {4\pi\cdot\varepsilon_0}} \cdot {{Q_1 \cdot Q_2} \over {r^2}}}}$ \\
 mit $\varepsilon_0 = 8,85 \cdot 10^{-12} \cdot {{C^2 \over {m^2\cdot N}}} = 8,85 \cdot 10^{-12} \cdot {{As} \over {Vm}}$ mit $\varepsilon_0 = 8,85 \cdot 10^{-12} \cdot {{C^2 \over {m^2\cdot N}}} = 8,85 \cdot 10^{-12} \cdot {{As} \over {Vm}}$
 </callout> </callout>
Zeile 584: Zeile 584:
 </WRAP> </WRAP>
  
-Geben Sie für die Spannung in <imgref BildNr21> an, ob diese nach der Spannungsdefinition positiv oder nagativ ist+Geben Sie für die Spannungen $U_{Batt}$, $U_{12}$ und $U_{21}$ in <imgref BildNr21> an, ob diese nach der Spannungsdefinition positiv oder negativ sind
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 615: Zeile 615:
  
 </WRAP><WRAP column> </WRAP><WRAP column>
-{{url>https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjCAMB0l3BWK0AsKAcYBs6CckB2SAZmPUixSxAUhpsgCgAnEAJgWuzo+rfXRRwcRmAJtwuCd3AEuWOnQL0ki5EgBqAewA2AFwCGAcwCmjI+0iD+1qyGKQUURsSKTpC9mycyIixgDultYC7JzsoUwARuyk4ChIbLjUDtRMQWze4J682f5AA 350,300 noborder}}+{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWK0AsKAcYBs6CckB2SAZmPUixSxAUhpsgCgAnEAJgWuzo+rfXRRwcRmAJtwuCd3AEuWOnQL0ki5EgBqAewA2AFwCGAcwCmjI+0iD+1qyGKQUURsSKTpC9mycyIixgDultYC7JzsoUwARuyk4ChIbLjUDtRMQWze4J682f5AA 350,300 noborder}}
 </WRAP></WRAP></WRAP> </WRAP></WRAP></WRAP>
  
Zeile 697: Zeile 697:
  
   * Es existiert auch ein spezifischer Leitwert $\kappa$, gegeben über den Leitwert $G$ : $G= \kappa \cdot {{A}\over{l}}$   * Es existiert auch ein spezifischer Leitwert $\kappa$, gegeben über den Leitwert $G$ : $G= \kappa \cdot {{A}\over{l}}$
-    * Der spezifische Leitwert $\kappa$ ist der Kehrwert des spezifischem Widerstands $\rho$: $\kappa$ +  * Der spezifische Leitwert $\kappa$ ist der Kehrwert des spezifischem Widerstands $\rho$: $\kappa={1}\over{\rho$}$
- +
-==== Verbraucher ==== +
-  * Ein Widerstand wird häufig auch als Verbraucher bezeichnet.  +
-  * Der umgangssprachlicher Begriff Verbraucher steht aber hierbei für einen elektrischen Verbraucher - also einem Bauteil, welches die elektrische Energie in eine andere Energieform wandelt.  +
-  * Neben den reinem ohmschen Verbraucher existieren aber auch ohmsch-induktive Verbraucher (z.B. Spulen im Motor) oder ohmsch-kapazitive Verbraucher (z.B. verschiedene Netzteile durch Kondensatoren am Ausgang). Entsprechend ist die Gleichsetzung von Widerstand und Verbraucher falsch.+
  
 ==== Temperaturabhängigkeit von Widerständen ==== ==== Temperaturabhängigkeit von Widerständen ====
Zeile 740: Zeile 735:
   * Die Konstante wird hierbei ersetzt durch $c = R_0 \cdot \alpha$   * Die Konstante wird hierbei ersetzt durch $c = R_0 \cdot \alpha$
   * $\alpha$ ist hierbei der **lineare Widerstands-Temperaturkoeffizient** mit der Einheit: $ [\alpha] = {{1}\over{[\vartheta]}} = {{1}\over{K}} $   * $\alpha$ ist hierbei der **lineare Widerstands-Temperaturkoeffizient** mit der Einheit: $ [\alpha] = {{1}\over{[\vartheta]}} = {{1}\over{K}} $
-  * Neben dem linearen Term ist es auch möglich mit höherem Exponenten des Temperatureinflusses die Genauigkeit der Berechnung von $R(\vartheta)$ erhöhen. Dieser Ansatz wir in Mathematik unter {{wpde>Fourierreihe}} nochmals detaillierter betrachtet+  * Neben dem linearen Term ist es auch möglich mit höherem Exponenten des Temperatureinflusses die Genauigkeit der Berechnung von $R(\vartheta)$ erhöhen. Dieser Ansatz wir in Mathematik unter {{wpde>Potenzreihe}} nochmals detaillierter betrachtet
   * Diese Widerstands-Temperaturkoeffizienten werden mit griechischen Buchstaben beschrieben: $\alpha$, $\beta$, $\gamma$, ...   * Diese Widerstands-Temperaturkoeffizienten werden mit griechischen Buchstaben beschrieben: $\alpha$, $\beta$, $\gamma$, ...
  
Zeile 807: Zeile 802:
   * Beispiele dafür sind dotierte Halbleiter oder Metalle   * Beispiele dafür sind dotierte Halbleiter oder Metalle
   * Anwendungen sind Temperatursensoren. Hierzu bieten sie häufig einen großen Temperaturbereich und gute Linearität (z.B. PT100 im Bereich von $-100°C$ bis $200°C$).   * Anwendungen sind Temperatursensoren. Hierzu bieten sie häufig einen großen Temperaturbereich und gute Linearität (z.B. PT100 im Bereich von $-100°C$ bis $200°C$).
 +  * [[https://www.geogebra.org/m/VVA2YUJQ#material/EQQm5kbT|Interaktives Beispiel]] zum Kaltleiter
 </callout> </callout>
  
Zeile 858: Zeile 854:
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
 +
 +{{page>aufgabe_1.7.6_mit_rechnung&nofooter}}
 +
  
 ===== 1.7 Leistung und Wirkungsgrad ===== ===== 1.7 Leistung und Wirkungsgrad =====
Zeile 867: Zeile 866:
 </callout></WRAP> </callout></WRAP>
  
-=== Ermittlung der elektrischen Leistung im Gleichstrom-Stromkreis ===+==== Ermittlung der elektrischen Leistung im Gleichstrom-Stromkreis ====
 Aus dem Kapitel [[#1.5 Spannung, Potential und Energie]] ist bekannt, dass eine Bewegung einer Ladung über eine Potentialdifferenz hinweg einer Änderung der Energie entspricht. Ladungstransport bedeutet also automatisch Energieaufwand. Häufig interessiert aber der Energieaufwand pro Zeiteinheit.  Aus dem Kapitel [[#1.5 Spannung, Potential und Energie]] ist bekannt, dass eine Bewegung einer Ladung über eine Potentialdifferenz hinweg einer Änderung der Energie entspricht. Ladungstransport bedeutet also automatisch Energieaufwand. Häufig interessiert aber der Energieaufwand pro Zeiteinheit. 
  
Zeile 894: Zeile 893:
  
 Damit ergibt sich für die Leistung (d.h. pro Zeiteinheit umgesetzte Energie): \\ Damit ergibt sich für die Leistung (d.h. pro Zeiteinheit umgesetzte Energie): \\
-$\boxed{W=U_{12} \cdot I}$ mit der Einheit $[P]= 1 V\cdot A = 1W \quad$ ... $W$ steht hier für Watt.+$\boxed{P=U_{12} \cdot I}$ mit der Einheit $[P]= 1 V\cdot A = 1W \quad$ ... $W$ steht hier für Watt.
  
 Für ohmsche Widerstände gilt:  Für ohmsche Widerstände gilt: 
Zeile 900: Zeile 899:
 $\boxed{P=R\cdot I^2 = {{U_{12}^2}\over{R}}}$ $\boxed{P=R\cdot I^2 = {{U_{12}^2}\over{R}}}$
  
-=== Nenngrößen von ohmschen Verbrauchern ===+==== Nenngrößen von ohmschen Verbrauchern ====
  
 ^ Name der Nenngröße ^ physikalische Größe ^ Beschreibung ^ ^ Name der Nenngröße ^ physikalische Größe ^ Beschreibung ^
Zeile 906: Zeile 905:
 | Nennstrom          | $I_N$               | $I_N$ ist der im Betrieb mit Nennleistung auftretender Strom                                      | | Nennstrom          | $I_N$               | $I_N$ ist der im Betrieb mit Nennleistung auftretender Strom                                      |
 | Nennspannung       | $U_N$               | $U_N$ ist der im Betrieb mit Nennleistung auftretender Spannung                                   | | Nennspannung       | $U_N$               | $U_N$ ist der im Betrieb mit Nennleistung auftretender Spannung                                   |
 +
 +
 +==== Wirkungsgrad ====
  
 <WRAP right 30%> <WRAP right 30%>
-<imgcaption BildNr21 | Leistungsflussdiagramm>+<imgcaption BildNr23 | Leistungsflussdiagramm>
 </imgcaption> </imgcaption>
 {{drawio>Leistungsfluss}} {{drawio>Leistungsfluss}}
  
 </WRAP> </WRAP>
- 
-=== Wirkungsgrad === 
  
 Die nutzbare (= nach außen abgegebene) $P_A$ Leistung ist immer kleiner als die zugeführte (eingehende) Leistung $P_E$. Die Differenz wird als Verlustleistung $P_V$  bezeichnet. Es gilt damit:  Die nutzbare (= nach außen abgegebene) $P_A$ Leistung ist immer kleiner als die zugeführte (eingehende) Leistung $P_E$. Die Differenz wird als Verlustleistung $P_V$  bezeichnet. Es gilt damit: 
Zeile 924: Zeile 924:
 $\boxed{\eta = {{P_{A}}\over{P_{E}}}\overset{!}{<} 1}$ $\boxed{\eta = {{P_{A}}\over{P_{E}}}\overset{!}{<} 1}$
  
-Bei hintereinandergeschalteten Systemen (siehe <imgref BildNr21>) ergibt sich der Gesamtwiderstand über:+Bei hintereinandergeschalteten Systemen (siehe <imgref BildNr23>) ergibt sich der Gesamtwiderstand über:
  
 $\boxed{\eta = {{P_{A}}\over{P_{E}}} = {\not{P_{1}}\over{P_{E}}}\cdot {\not{P_{2}}\over \not{P_{1}}}\cdot {{P_{A}}\over \not{P_{2}}} = \eta_1 \cdot \eta_3 \cdot \eta_3}$ $\boxed{\eta = {{P_{A}}\over{P_{E}}} = {\not{P_{1}}\over{P_{E}}}\cdot {\not{P_{2}}\over \not{P_{1}}}\cdot {{P_{A}}\over \not{P_{2}}} = \eta_1 \cdot \eta_3 \cdot \eta_3}$
Zeile 946: Zeile 946:
 <panel type="info" title="Aufgabe 1.7.3 Verlustleistung und Wirkungsgrad I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>  <panel type="info" title="Aufgabe 1.7.3 Verlustleistung und Wirkungsgrad I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
  
-  * Der Batteriemonitor BQ769x0 misst die Lade- und Entladeströme einer Lithium-Ionen-Batterie mittels der Spannung über einem Messwiderstand (eng. Shunt). Dieser soll so ausgelegt sein, dass die bipolaren Messsignale einen Spannungspegel im Bereich von -0,20 V bis +0,20 V haben. Der Analog-Digital.Wandler hat eine Auflösung von 15uV. Anhand der Ströme kann die Ladung in der Batterie gezählt und damit der Ladezustand (SOC) ermittelt werden.  +<WRAP right> 
-    * Der Shunt soll einen Widerstandswert von 1mOhm haben. Welche maximalen Lade-/Entladeströme sind noch messbar? Welcher minimale Strom ist messbar?+<imgcaption BildNr29 | Skizze des Aufbaus> 
 +</imgcaption> 
 +{{drawio>SkizzeBatteriemonitor}} 
 +</WRAP> 
 + 
 +  * Der Batteriemonitor BQ769x0 misst die Lade- und Entladeströme einer Lithium-Ionen-Batterie mittels der Spannung über einem Messwiderstand (eng. Shunt). In <imgref BildNr29> ist der Analog-Digital-Wandler ($ADC$) dieses Chips über die Platine am Shunt $R\_S$ angeschlossen. Durch den Shunt fließt der Entladestrom vom Batterieanschluss $BAT+$ zu $OUT+$ und über $OUT-$ zurück zu $BAT-$. Der Shunt soll so ausgelegt sein, dass die bipolaren Messsignale einen Spannungspegel im Bereich von $-0,20 Vbis $+0,20 Vhaben. Der Analog-Digital-Wandler hat eine Auflösung von $15uV$. Anhand der Ströme kann die Ladung in der Batterie gezählt und damit der Ladezustand (SOC) ermittelt werden.  
 +    * Zeichnen Sie ein Ersatzschaltbild mit Spannungsquelle (Batterie), Messwiderstand und Lastwiderstand $R_L$. Zeichnen Sie auch die Messpannung und Lastspannung ein
 +    * Der Shunt soll einen Widerstandswert von $1m\Omega$ haben. Welche maximalen Lade-/Entladeströme sind noch messbar? Welche minimale Stromänderung ist messbar?
     * Welche Verlustleistung wird im Extremfall am Shunt erzeugt?      * Welche Verlustleistung wird im Extremfall am Shunt erzeugt? 
-    * Die Batterie soll eine Nominalspannung von 12V haben (3 Zellen). Welchen Wirkungsgrad (bzw. welche Verluste) ergeben sich allein durch die Messung?+    * Nun soll der Wirkungsgrad berechnet werden 
 +      * Ermitteln Sie den Wirkungsgrad als Funktion von $R\_S$ und $R_L$. Beachten Sie, dass durch beide Widerstände der gleiche Strom fließt. 
 +      * Sonderaufgabe: Die Batterie soll eine Nominalspannung von $10V$ haben (3 Zellen) und der maximale Entladestrom soll fließen. Welchen Wirkungsgrad ergeben sich allein durch die Messung?
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
 <panel type="info" title="Aufgabe 1.7.4 Verlustleistung und Wirkungsgrad II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>  <panel type="info" title="Aufgabe 1.7.4 Verlustleistung und Wirkungsgrad II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
  
-  * Eine Wasserpumpe ($\eta_P = 60%$) besitzt einen elektromotorischem Antrieb ($\eta_M=90%$).  +Eine Wasserpumpe ($\eta_P = 60\%$) besitzt einen elektromotorischem Antrieb ($\eta_M=90\%$).  
-  Die Pumpe soll je Minute $500l$ Wasser $12m$ hochpumpen.+Die Pumpe soll je Minute $500l$ Wasser $12m$ hochpumpen.
  
   * Welche Nennleistung muss der Motor haben?   * Welche Nennleistung muss der Motor haben?