Dies ist eine alte Version des Dokuments!
$I.\quad$ Calculation example for decimal value
\begin{align*}
\begin{smallmatrix}
\text{value}: & & 2 & 6 & 5 & 8. & 4 & 7 \\
\text{index}: & i & 3 & 2 & 1 & 0 & -1 & -2 \\
\text{place value}: & B^i & 10^3 & 10^2 & 10^1 & 10^0 & 10^{-1} & 10^{-2} \\
& & 1000 & 100 & 10 & 1 & 0.1 & 0.01 \\
\text{digit}: & z_i & 2 & 6 & 5 & 8 & 4 & 7 \\
\text{calc.}: & z_i \cdot B^i & 2000 & 600 & 50 & 8 & 0,4 & 0,07 \\
\text{result}: & \sum_i{ z_i \cdot B^i } & 2658.47 \\
\end{smallmatrix}
\end{align*}
\begin{align*}
value && && 2 && 6 && 5 && 8 , && 4 && 7 \\
index && i && 3 && 2 && 1 && 0 && -1 && -2 \\
place value && B^i && 10^3 && 10^2 && 10^1 && 10^0 && 10^{-1} && 10^{-2} \\
\end{align*}
value | 2 | 6 | 5 | 8 , | 4 | 7 | |
index | $i$ | 3 | 2 | 1 | 0 | -1 | -2 | |
place value | $B^i$ | $\small{10^3}$
$\small{1000}$ | $\small{10^2}$
$\small{100}$ | $\small{10^1}$
$\small{10}$ | $\small{10^0}$
$\small{1}$ | $\small{10^-1}$
$\small{0.10}$ | $\small{10^-2}$
$\small{0.01}$ | |
digit | $z_i$ | 2 | 6 | 5 | 8 | 4 | 7 | |
calc. | $z_i \cdot B^i$ | 2000 | 600 | 50 | 8 | 0.4 | 0.07 | |
Result $\sum_i{ z_i \cdot B^i }$ | 2658,47 |
value | 2 | 6 | 5 | 8 , | 4 | 7 | |
index | $i$ | 3 | 2 | 1 | 0 | -1 | -2 | |
$\quad\quad$
$\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ |
$\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | |
$\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | |
$\quad\quad$
$\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | $\quad\quad$ | |
value | 2 | 6 | 5 | 8 , | 4 | 7 | |
index | $i$ | 3 | 2 | 1 | 0 | -1 | -2 | |
place value | $B^i$ | $\small{10^3}$
$\small{1000}$ | $\small{10^2}$
$\small{100}$ | $\small{10^1}$
$\small{10}$ | $\small{10^0}$
$\small{1}$ | $\small{10^-1}$
$\small{0.10}$ | $\small{10^-2}$
$\small{0.01}$ | |
digit | $z_i$ | 2 | 6 | 5 | 8 | 4 | 7 | |
calc. | $z_i \cdot B^i$ | 2000 | 600 | 50 | 8 | 0.4 | 0.07 | |
Result $\sum_i{ z_i \cdot B^i }$ | 2658,47 |
aus (2+3) | $\color{blue}{I_p} = \color{blue}{I_m} = 0$ | $I_p$ und $I_m$ sind damit definiert |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
aus (6) | $\color{blue}{I_o} = I_1 $ | $I_o$ ist damit bekannt, wenn $I_1$ bekannt ist |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
aus (7) und (3) | $I_1 - I_2 -\color{blue}{0} = 0 $ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $I_1 = I_2 = I_o$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $\color{blue}{I_1} = \color{blue}{I_2} = \color{blue}{I_o} $ | mit (8) und (9): $I_\boxed{}=\frac{U_\boxed{}}{R_\boxed{}}$ und (5) |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $\frac{U_1}{R_1}= \frac{U_2}{R_2} = \frac{U_A}{R_1 + R_2}$ | Spannungsteilerformel, $I=const.$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
(10) | $U_2= U_A\cdot\frac{R_2}{R_1+R_2}$ | Spannungsteilerformel |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$II.\quad$ Betrachtung der Spannungsverstärkung
aus (0) | $\color{blue}{A_V}=\frac{U_A}{U_E}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{\color{blue}{U_E}}$ | mit (4): $U_E=U_2+U_D$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{\color{blue}{U_2+U_D}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{\color{blue}{U_2}+U_D}$ | mit (10): $U_2= U_A\cdot\frac{R_2}{R_1+R_2}$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{\color{blue}{U_A\cdot\frac{R_2}{R_1+R_2}}+U_D}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{U_A\cdot\frac{R_2}{R_1+R_2}+U_D}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{U_A\cdot\frac{R_2}{R_1+R_2}+\color{blue}{U_D}}$ | mit (1) |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{U_A\cdot\frac{R_2}{R_1+R_2}+\color{blue}{\frac{U_A}{A_D}}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{U_A\cdot\frac{R_2}{R_1+R_2}+\frac{U_A}{A_D}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{\color{blue}{U_A}}{\color{blue}{U_A}\cdot\frac{R_2}{R_1+R_2}+\frac{\color{blue}{U_A}}{A_D}}$ | Erweitern mit $\frac{1}{U_A}$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{\frac{R_2}{R_1+R_2}+\frac{1}{A_D}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{\frac{R_2}{R_1+R_2}+\color{blue}{\frac{1}{A_D}}}$ | mit $\frac{1}{A_D} \xrightarrow{A_D \rightarrow \infty} 0$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{\frac{R_2}{R_1+R_2}}$ | Bruch umformen |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{R_1+R_2}{R_2}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |