Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Letzte Überarbeitung Beide Seiten der Revision
introduction_to_digital_systems:number_systems [2023/03/27 10:47]
mexleadmin
introduction_to_digital_systems:number_systems [2023/11/16 01:08]
mexleadmin
Zeile 1: Zeile 1:
-====== 2Number Systems ======+====== 2 Number Systems ======
  
 ===== 2.1 Types of Number Systems ===== ===== 2.1 Types of Number Systems =====
Zeile 28: Zeile 28:
  
 Besides this representation of quantities also the position of the symbol in the **numeral** was important: Besides this representation of quantities also the position of the symbol in the **numeral** was important:
-  * In general: the letters have to be arranged decreasing from left to right. For example $MDCI = 1601$+  * In general: the letters have to be arranged decreasing from left to right. For example $\rm MDCI = 1601$
   * There are deviations of this rule: When up to three of the lower symbols are written to the left, these have to be subtracted. Sounds complicated? \\ A kind of.... for example $\rm \color{blue}{M}\color{green}{CCD}\color{red}{L}IV = \color{blue}{1}\color{green}{3}\color{red}{5}4$. \\ Luckily, we do not have to learn this, but by this trick, the length of the numeral could be shortened,    * There are deviations of this rule: When up to three of the lower symbols are written to the left, these have to be subtracted. Sounds complicated? \\ A kind of.... for example $\rm \color{blue}{M}\color{green}{CCD}\color{red}{L}IV = \color{blue}{1}\color{green}{3}\color{red}{5}4$. \\ Luckily, we do not have to learn this, but by this trick, the length of the numeral could be shortened, 
  
Zeile 151: Zeile 151:
 As an example the Byte4 shall be written in decimal: As an example the Byte4 shall be written in decimal:
  
-$ Z_{10}(Byte4)= Z_{10}(19_{16}) \\ =\sum_{i=0}^1 z_i \cdot 16^i = \\ 1 \cdot 16^1 + 9 \cdot 16^0 = 16 + 9 = 25_{10}$+$ Z_{10}({\rm Byte}4)= Z_{10}(19_{16}) \\ =\sum_{i=0}^1 z_i \cdot 16^i = \\ 1 \cdot 16^1 + 9 \cdot 16^0 = 16 + 9 = 25_{10}$
  
 === Octal === === Octal ===
Zeile 200: Zeile 200:
  
 ^each position in decimal     ^ $\color{red}{1}$ ^ $\color{green}{12}$ ^ $\color{blue}{4}$ ^ ^each position in decimal     ^ $\color{red}{1}$ ^ $\color{green}{12}$ ^ $\color{blue}{4}$ ^
-|each position in hexadecimal | $\color{red}{1}$ | $\color{green}{C}$  | $\color{blue}{4}$ |+|each position in hexadecimal | $\color{red}{1}$ | $\color{green}{\rm C}$  | $\color{blue}{4}$ |
  
-The result is $\color{red}{1}\color{green}{C}\color{blue}{4}_{16}$+The result is $\color{red}{1}\color{green}{\rm C}\color{blue}{4}_{16}$
 </callout> </callout>
  
Zeile 216: Zeile 216:
  
 ^each position in decimal     ^ $\color{blue }{1}$ ^ $\color{green}{14}$ ^ $\color{brown}{11}$ ^  $\color{red  }{8}$ ^  $\color{grey }{5}$ ^  $\color{blue }{1}$ ^ $\color{green}{14}$ ^ $...$ | ^each position in decimal     ^ $\color{blue }{1}$ ^ $\color{green}{14}$ ^ $\color{brown}{11}$ ^  $\color{red  }{8}$ ^  $\color{grey }{5}$ ^  $\color{blue }{1}$ ^ $\color{green}{14}$ ^ $...$ |
-|each position in hexadecimal | $\color{blue }{1}$ | $\color{green}{\rm E}$  | $\color{brown}{B}$  |  $\color{red  }{8}$ |  $\color{grey }{5}$ |  $\color{blue }{1}$ |  $\color{green}{\rm E}$  |     |+|each position in hexadecimal | $\color{blue }{1}$ | $\color{green}{\rm E}$  | $\color{brown}{\rm B}$  |  $\color{red  }{8}$ |  $\color{grey }{5}$ |  $\color{blue }{1}$ |  $\color{green}{\rm E}$  |     |
  
-The result is $0.\overline{ \color{blue }{1} \color{green}{E} \color{brown}{B} \color{red  }{8} \color{grey }{5} }$+The result is $\rm 0.\overline{ \color{blue }{1} \color{green}{E} \color{brown}{B} \color{red  }{8} \color{grey }{5} }$
 </callout> </callout>
  
Zeile 301: Zeile 301:
                +672 \\                +672 \\
 \hline  \hline 
-1\overset{\color{red}{2}}{1}\overset{\color{red}{1}}{4}\overset{}{2}+1\overset{\color{red}{2}}{2}\overset{\color{red}{1}}{4}\overset{}{2}
 \end{align*} \end{align*}
  
Zeile 387: Zeile 387:
 \begin{align*} \begin{align*}
 \begin{array}{lll} \begin{array}{lll}
-{ +{a) \\ 
-a) \\ +\color{white}                       {+}5_{16} \\ 
-\color{white}{+}5_{16} \\ +                                     + 3_{16}\\
-+3_{16}\\+
 \,\overline{\color{white}{+}\overset{}{8_{16}}} \,\overline{\color{white}{+}\overset{}{8_{16}}}
-}&{ +}&{ b) \\ 
-b) \\ +\color{white}                           {+}7_{16} \\ 
-\color{white}{+}7_{16} \\ +                                         + 3_{16}\\ 
-+3_{16}\\ +\,\overline{\color{white}{+}\overset{}{\rm A_{16}}} 
-\,\overline{\color{white}{+}\overset{}{A_{16}}} +}&{ c) \\ 
-}&{ +\color{white}                       {+}\,    1_{16} \\ 
-c) \\ +                                     {\rm D}_{16}\\ 
-\color{white}{+}\,1_{16} \\ +\,\overline{\color{white}{+}\overset{}{{\rm E}_{16}}} 
-+D_{16}\\ +}&{ d) \\ 
-\,\overline{\color{white}{+}\overset{}{E_{16}}} +\color{white}                             {+} {\rm E}_{16} \\ 
-}&{ +                                            {\rm A}_{16}\\
-d) \\ +
-\color{white}{+}E_{16} \\ +
-+A_{16}\\+
 \;\;\overline{\overset{\color{red}{1}}{1}\overset{}{8_{16}}} \;\;\overline{\overset{\color{red}{1}}{1}\overset{}{8_{16}}}
  
Zeile 412: Zeile 408:
  
 a) This one is simple: looks like a decimal formula.. \\ a) This one is simple: looks like a decimal formula.. \\
-b) Here, the summands look like decimal numerals, but the result $7_{10} + 3_{10} = 10_{10}$ is still within the range of the base. The correct symbol would be $10_{10} = A_{16}$ \\ +b) Here, the summands look like decimal numerals, but the result $7_{10} + 3_{10} = 10_{10}$ is still within the range of the base. The correct symbol would be $10_{10} = \rm A_{16}$ \\ 
-c) Now, the summands are a "bit more hexadecimally". The easiest way is: "convert the single digit from hex to decimal, do the operation, and re-convert to hex". For the given example: $1_{10} + 13_{10} = 14_{10} = D_{16}$ \\ +c) Now, the summands are a "bit more hexadecimally". The easiest way is: "convert the single digit from hex to decimal, do the operation, and re-convert to hex". For the given example: $1_{10} + 13_{10} = 14_{10} = \rm D_{16}$ \\ 
-d) Also for this calculation the described way is beneficial: $E_{16} + A_{16} = 14_{10} + 10_{10} = 24_{10}$. The result is larger than the base, and therefore the value has to be separated in more digits: $24_{10} = 16_{10} + 8_{10} = 10_{16} + 8_{16} = 18_{10}$ \\+d) Also for this calculation the described way is beneficial: $\rm E_{16} + A_{16} = 14_{10} + 10_{10} = 24_{10}$. The result is larger than the base, and therefore the value has to be separated in more digits: $24_{10} = 16_{10} + 8_{10} = 10_{16} + 8_{16} = 18_{10}$ \\
  
 For a hexadecimal value with more digits, the carry of the calculation before has to be added - otherwise, every step remains the same.  For a hexadecimal value with more digits, the carry of the calculation before has to be added - otherwise, every step remains the same. 
Zeile 426: Zeile 422:
 \begin{align*} \begin{align*}
 \begin{array}{lll} \begin{array}{lll}
-{ +{ a) \\ 
-a) \\ +\color{white}                       {-}0_2 \\ 
-\color{white}{-}0_2 \\ +                                     - 0_2 \\
--0_2\\+
 \,\overline{\color{white}{-}\overset{}{0_2}} \,\overline{\color{white}{-}\overset{}{0_2}}
-}&{ +}&{ b) \\ 
-b) \\ +\color{white}                       {-}1_2 \\ 
-\color{white}{-}1_2 \\ +                                     - 1_2 \\
--1_2\\+
 \,\overline{\color{white}{-}\overset{}{0_2}} \,\overline{\color{white}{-}\overset{}{0_2}}
-}&{ +}&{ c) \\ 
-c) \\ +\color{white}                       {-}1_2 \\ 
-\color{white}{-}1_2 \\ +                                     - 0_2 \\
--0_2\\+
 \,\overline{\color{white}{-}\overset{}{1_2}} \,\overline{\color{white}{-}\overset{}{1_2}}
-}&{ +}&{ d) \\ 
-d) \\ +\color{white}                       {-}0_2 \\ 
-\color{white}{-}0_2 \\ +                                     - 1_2 \\
--1_2\\+
 \;\;\overline{\overset{\color{red}{1}}{\color{white}{0}}\overset{}{1_2}} \;\;\overline{\overset{\color{red}{1}}{\color{white}{0}}\overset{}{1_2}}
  
Zeile 452: Zeile 444:
 The calculation for $d)$ shows the carry, which here has to borrow a bit from the next upper digit. This is similar to the calculation:  The calculation for $d)$ shows the carry, which here has to borrow a bit from the next upper digit. This is similar to the calculation: 
 \begin{align*} \begin{align*}
-\color{white}{-}42_{10} \\ +\color{white}                                    {-}42_{10} \\ 
--23_{10}\\ +                                                  - 23_{10}\\ 
-\;\;\overline{\overset{\color{red}{1}}{1}\overset{}{9_{10}}}+\;\;\overline{\overset{\color{red}{1}}{1}\overset{}{ 9_{10}}}
 \end{align*}  \end{align*} 
  
Zeile 460: Zeile 452:
  
 \begin{align*} \begin{align*}
-\color{white}{-}\,10\boldsymbol{1}0_2 \\ +\color{white}      {-}\,10\boldsymbol{1}0_2 \\ 
--01\boldsymbol{1}1_2\\+                      01\boldsymbol{1}1_2\\
 \,\overline{\color{white}{+}\overset{\color{red}{1}}{0}\overset{\color{red}{1}}{0}\overset{\color{red}{\boldsymbol{1}}}{\boldsymbol{1}}\overset{}{1_2}} \,\overline{\color{white}{+}\overset{\color{red}{1}}{0}\overset{\color{red}{1}}{0}\overset{\color{red}{\boldsymbol{1}}}{\boldsymbol{1}}\overset{}{1_2}}
 \end{align*} \end{align*}
Zeile 468: Zeile 460:
  
 \begin{align*} \begin{align*}
-\color{white}{-}\,\boldsymbol{1}_2 \\ +\color{white}       {-}\,\boldsymbol{1}_2 \\ 
--\boldsymbol{1}_2\\+                       \boldsymbol{1}_2\\
 \overline{ \overset{\color{red}{1}} {\color{white}{0}} \overset{\color{red}{\boldsymbol{1}}} {\boldsymbol{1}}_2 } \overline{ \overset{\color{red}{1}} {\color{white}{0}} \overset{\color{red}{\boldsymbol{1}}} {\boldsymbol{1}}_2 }
 \end{align*} \end{align*}
  
-The calculation has to be executed as follows: $\boldsymbol{1}_2 - (\boldsymbol{1}_2 + \color{red}{\small{\boldsymbol{1}}} ) = {\boldsymbol{1}}_2 $. Additionally, another carry has to be taken from the next digit.+The calculation has to be executed as follows: $\boldsymbol{1}_2 - (\boldsymbol{1}_2 + \color{red}{\small{\boldsymbol{1}}} ) = {\boldsymbol{1}}_2 $.  
 +Additionally, another carry has to be taken from the next digit.
  
 === In Hexadecimal === === In Hexadecimal ===
  
 The calculation in hexadecimal is conceptually again the same. Some examples, which we will discuss below: The calculation in hexadecimal is conceptually again the same. Some examples, which we will discuss below:
- 
  
 \begin{align*} \begin{align*}
 +\rm 
 \begin{array}{lll} \begin{array}{lll}
-{ +{ a) \\ 
-a) \\ +                       \color{white}{-}15_{16} \\ 
-\color{white}{-}15_{16} \\ +                       -\color{white}{1}3_{16} \\
--\color{white}{1}3_{16}\\+
 \,\overline{\color{white}{-}\overset{}{12_{16}}} \,\overline{\color{white}{-}\overset{}{12_{16}}}
-}&{ +}&{ b) \\ 
-b) \\ +                                           \color{white}{-}23_{16} \\ 
-\color{white}{-}23_{16} \\ +                                       -\color{white}{\rm B}6_{16} \\ 
--\color{white}{B}6_{16}\\ +\overline{\color{white}{-}\overset{\color{red}{1}}{1} {\rm D}_{16}} 
-\overline{\color{white}{-}\overset{\color{red}{1}}{1}D_{16}} +}&{ c) \\ 
-}&{ +                               \color{white}{-}3{\rm F}_{16} \\ 
-c) \\ +                                              -1{\rm A}_{16}\\
-\color{white}{-}3F_{16} \\ +
--1A_{16}\\+
 \color{white}{-}\overline{\color{white}{B}\overset{}{25_{16}}} \color{white}{-}\overline{\color{white}{B}\overset{}{25_{16}}}
-}&{ +}&{ d) \\ 
-d) \\ +                                                   \color{white}{+}\,38_{16} \\ 
-\color{white}{+}\,38_{16} \\ +                                                             1{\rm A}_{16}\\ 
-+1A_{16}\\ +\color{white}{+}\overline{\overset{\color{red}{1}}{1}\overset{}{{\rm B}_{16}}}
-\color{white}{+}\overline{\overset{\color{red}{1}}{1}\overset{}{B_{16}}}+
  
 \end{array} \end{array}
Zeile 507: Zeile 496:
  
 a) This one is (again) simple: looks (again) like a decimal formula.. \\ a) This one is (again) simple: looks (again) like a decimal formula.. \\
-b) Here, both hexadecimal numerals look like decimal numerals, but the result $3_{10} - 6_{10} = 7_{10} + C$ lead to an underflow, where we have to take a carry of $C=-10_{10}$ for a decimal calculation. In hexadecimal, the carry differs. A better way to solve such a subtraction in hexadecimal is to add the carry before: $3_{16} - 6_{16} + \color{red}{10_{16}}$. Then the calculation can be converted to decimal:  $3_{10} - 6_{10} + \color{red}{16_{10}} = 19_{10} - 6_{10} = 13_{10}$. This result has to be converted back to hexadecimal: $13_{10} = D_{16}$. For the next column, the carry has to be considered. \\ +b) Here, both hexadecimal numerals look like decimal numerals, but the result $3_{10} - 6_{10} = 7_{10} + C$ lead to an underflow, where we have to take a carry of $C=-10_{10}$ for a decimal calculation. In hexadecimal, the carry differs. A better way to solve such a subtraction in hexadecimal is to add the carry before: $3_{16} - 6_{16} + \color{red}{10_{16}}$. Then the calculation can be converted to decimal:  $3_{10} - 6_{10} + \color{red}{16_{10}} = 19_{10} - 6_{10} = 13_{10}$. This result has to be converted back to hexadecimal: $\rm 13_{10} = D_{16}$. For the next column, the carry has to be considered. \\ 
-c) For this formula the idea from b) helps, too: for each digit-by-digit subtraction, we will have a look, at whether a transformation to decimal is beneficial. For the rightmost it is: $F_{16}- A_{16} = 15_{10} - 10_{10} = 5_{10}$. The rightmost result is now: $5_{10} = 5_{16}$  \\ +c) For this formula the idea from b) helps, too: for each digit-by-digit subtraction, we will have a look, at whether a transformation to decimal is beneficial. For the rightmost it is: $\rm F_{16}- A_{16} = 15_{10} - 10_{10} = 5_{10}$. The rightmost result is now: $5_{10} = 5_{16}$  \\ 
-d) We can do the same thing here, for $8_{16}-A_{16}$: consider the carry, convert to decimal, calculate, and re-convert to hexadecimal. $8_{10}-10_{10}+ \color{red}{16_{10}} = 24_{10}-10_{10}= 14_{10}$. The result is $E_{16}$.  \\+d) We can do the same thing here, for $8_{16}-A_{16}$: consider the carry, convert to decimal, calculate, and re-convert to hexadecimal. $8_{10}-10_{10}+ \color{red}{16_{10}} = 24_{10}-10_{10}= 14_{10}$. The result is $\rm E_{16}$.  \\
  
 <WRAP column 100%> <panel type="danger" title="Note!"> <WRAP group><WRAP column 7%>{{fa>exclamation?32}}</WRAP><WRAP column 80%> <WRAP column 100%> <panel type="danger" title="Note!"> <WRAP group><WRAP column 7%>{{fa>exclamation?32}}</WRAP><WRAP column 80%>
Zeile 560: Zeile 549:
  
   * [[https://calculator.name/baseconvert/decimal/hexadecimal/|Conversion tool from decimal to hexadecimal]], this tool shows also the steps and can be used vice versa   * [[https://calculator.name/baseconvert/decimal/hexadecimal/|Conversion tool from decimal to hexadecimal]], this tool shows also the steps and can be used vice versa
 +  * The [[https://www.omnicalculator.com/math/binary-fraction|OmniCalculator]] can also calculate binary fractions and comes with another explaination of the manual process. 
   * A short video on the "[[https://www.youtube.com/watch?v=_s5RFgd59ao&ab_channel=Numberphile|Everything Formula]]" which prints all possible output and is directly related to binary encoding.   * A short video on the "[[https://www.youtube.com/watch?v=_s5RFgd59ao&ab_channel=Numberphile|Everything Formula]]" which prints all possible output and is directly related to binary encoding.
  
Zeile 591: Zeile 581:
 Tip: Convert nibble by nibble to binary. Tip: Convert nibble by nibble to binary.
  
-  - $4321H$ +  - $\rm 4321H$ 
-  - $0xCAFE$ +  - $\rm 0xCAFE$ 
-  - $ \$ $$4be79 $ +  - $ \$ $$\rm 4be79 $ 
-  - $ \$ $$398B4C $ +  - $ \$ $$\rm 398B4C $ 
-  - $0x3a4f.4ecd $ +  - $\rm 0x3a4f.4ecd $ 
-  - $\$1.3DAF $+  - $\$\rm 1.3DAF $
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 605: Zeile 595:
 Tip: Use the numerals from Exercise 2.3.1. Tip: Use the numerals from Exercise 2.3.1.
  
-  - $0b10110110$+  - $\rm 0b10110110$
   - $\%10100101$   - $\%10100101$
-  - $1111\, 0111\, 0001\, 0011B$ +  - $\rm 1111\, 0111\, 0001\, 0011B$ 
-  - $0110111.0101b$ +  - $\rm 0110111.0101b$ 
-  - $0.10101b$ +  - $\rm 0.10101b$ 
-  - $0.1001\, 1001\, ... b$+  - $\rm 0.1001\, 1001\, ... b$
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 633: Zeile 623:
 Execute the following operations manually with the given dual numerals. \\ Execute the following operations manually with the given dual numerals. \\
  
-  - $01110111B + 11010101B$ +  - $\rm 01110111B + 11010101B$ 
-  - $01011001B + 10011111B$ +  - $\rm 01011001B + 10011111B$ 
-  - $01100111B - 01001100B$ +  - $\rm 01100111B - 01001100B$ 
-  - $10101110B - 10000111B$ +  - $\rm 10101110B - 10000111B$ 
-  - $0011.111B - 0011.100B$ +  - $\rm 0011.111B - 0011.100B$ 
-  - $001111.011B + 1.010011B$ +  - $\rm 001111.011B + 1.010011B$ 
-  - $01101.100B - 01000.111B$ +  - $\rm 01101.100B - 01000.111B$ 
-  - $100101.11B - 110001.10B$+  - $\rm 100101.11B - 110001.10B$
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 648: Zeile 638:
 Execute the following operations manually with the given dual numerals. \\ Execute the following operations manually with the given dual numerals. \\
  
-  - $1011B \cdot 0101B$ +  - $\rm 1011B \cdot 0101B$ 
-  - $01100101B \cdot 110B$ +  - $\rm 01100101B \cdot 110B$ 
-  - $10101111B : 101B$ +  - $\rm 10101111B : 101B$ 
-  - $11110000B : 1000B$+  - $\rm 11110000B : 1000B$
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
Zeile 658: Zeile 648:
 Execute the following operations manually with the given dual numerals. \\ Execute the following operations manually with the given dual numerals. \\
  
-  - $1334H + 07ABH$ +  - $\rm  1334H +  07ABH$ 
-  - $0DC43H - 0BD19H$ +  - $\rm 0DC43H - 0BD19H$ 
-  - $1F23H + 90E8H$ +  - $\rm  1F23H +  90E8H$ 
-  - $98C5H - 84CAH$ +  - $\rm  98C5H -  84CAH$ 
-  - $234AH + 7EE6H$ +  - $\rm  234AH +  7EE6H$ 
-  - $0F10CH - 0ED43H$+  - $\rm 0F10CH - 0ED43H$
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 674: Zeile 664:
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-<panel type="info" title="Exercise 2.3.9. One's Complement"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Exercise 2.3.9. Two's Complement"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-In the simulation in <imgref pic70> the one's complement of a 4bit value is shown. \\ +In the simulation in <imgref pic70> the two's complement of a 4bit value is shown. \\ 
-On initialization the value is the following:  +On initializationthe value is the following: 
-  * The value for $A$ is $1010_2 = 10_{10}$. The decimal value ''10'' is also shown in the first display from the left in the circuit.  +  * The value for variable $A$ is $1010_2 = 10_{10}$. The decimal value ''10'' is also shown in the first display from the left in the circuit.  
-  * The value for $B$ is $1110_2 = 14_{10}$. The decimal value ''14'' is also shown in the second display from the left in the circuit.  +  * The value for variable $B$ is $1110_2 = 14_{10}$. The decimal value ''14'' is also shown in the second display from the left in the circuit.  
-  * The addition $A+B$ leads to $S = 1000_2 = 8_{10}$. The decimal value ''10'' is also shown in the rightmost display in the circuit.  +  * The addition $A+B$ leads to $S = 1000_2 = 8_{10}$. The decimal value ''10'' is also shown on the rightmost display in the circuit.  
-  * There is another value in the second display from the right. This is called $B'$ and it is equal to $0010_2 = 2_{10}$.+  * There is another value in the second display from the right. This is called $B'$and it is equal to $0010_2 = 2_{10}$.
    
 <WRAP><well> <WRAP><well>
-<imgcaption pic70|One's Complement></imgcaption> \\ +<imgcaption pic70|Two's Complement></imgcaption> \\ 
-{{url>https://www.falstad.com/circuit/circuitjs.html?hideSidebar=true&ctz=CQAgzCAMB0l3BOJyWoSALNATAVmwIyQAc28kAbNgOzrbEi6OSMCmAtAQQFBnUjswYCiAIYMAsPlHSJAQUi9I-QcNH1J0gmUwg5PPpLVdsm09pbzsSlUJEIRgrZAnyw3AB4gEppkQkMEgQMAMqeAtgYDI7YauhBDABC4YIYLLYaRLrBeik05gQRuH6u4CwAOgAOedSmGOjseEyyZSBV3BgEDWCmDlDeIoUY3ADuAsQM2JHjk2lQ3ACyIBOMIitzptjQuIsgtat7dSyb27v+B+cbIFs7SxYXOlc33AAyESu4MevH-QBmAIYAGwAzqxGPM3oIXAcoa4fiwASCwUxFJC7DD0VdCojQeDUZIdJ8CZZ4SAccj5oZGnMxBJGkSCC1EooqZEWNoGPTBo8QIkDMoIjTtEVuZZedZWXM+lzRNCJIl3JCphIiY1pliyUDcSjXoKWKq2ZgftitRT8Y0SDCyIFjZqkXjdZwfDCukdrn9TQ6xo0Pl8GMQWIpvWBoaqQxJ9kHiRidBQJFGff6WKo1oHRkZUxnROJ5sHjBoU4dc1n9rCiwmeiw41nqxW1NXCyZi4XpeiiXXBjnC4QRBXhYb2AHrnMEysB5Xh2m8yJlVmOc30U3uz0FxoB31DQmN3N2BvLaPJtNB8dpqPjpbdzP9+nj6JnZxoa7m+cnw+JJub+dx2oP9PJ1m+grNcd3RWJTA7a4jwnX8sx7SR+xHG9DXoZM4PDZtkJWNUJHQhMwLKOlkMApC5nQ6kWGI71zjIw1cKQlcyL6OjvUNJciN7Ejjiw1iNAPAiImmZiIgIEQyKHITyOzQiNiHPCpRiOZ204kAG1Y4U8OmVS5lrZTS2tctlPnSTI2UodJNpZ9nTMw1ZKQ6YDU0+MkMtA1LRMqjnVVJ9bM6BpDWlfS+iGT9oTwRxqOhM9ri80KlO9Id8gEDd3Jma4sISlYt1E6FL2uFLB0mdKGDo3yAMcdCgswDouiLILoUq4YxnuBkdFsprQ0GaEUt9ZZoicprWvSUw2qLId9gsqNxo0fYUpm8wuvA9MVmrfYdLGVaIwKRb1t6ER9jiosLP2RLJs2FbzF49NxuFY6DuOqJao4wwpoYBk1AkEJ+X4cacwZFoQhZAVrt8UVdBCCUgd2i45RAEJ3GDTY5ry7ai2watqxOq7NiJIlMZ24dAkmFKMb0998umRLqWijiWPfMNsZpglILpQ9+oEET-04Gd8o5xLcfy1nxmRykBU4DRpQsy5eXcKl5yXSWeUSCGVDlgsFbFPkbHZzIu0lplFAAQhAABJAA7AA3VgACcABdrf6AANMAABoHewV2CFdlgAHoned333d9z3fZYM3Ldt+3yHKABHLguHKU34AIGO48gBO4CIFOiGTxPIHj2OiDTxPC5TvOc7zvPS8z4vM9jjP07j0u4ATwu0+jsuc8L5P264Ivs7bivO7LmOK77kv2+H03e+7jOx9rpOW8bifm9NpROXnaU+kqsPrbtq3+kDRhuC6Rwh1fcbnQgRqmYHXnEPi4WHsxo2AAVAQAV2BQoWD9t2Pa9kAABNF2gD3aAM9oAlgb9P7f3gCPeuudK4T2rrPeB8dc751Hg3ZuPdK7FyQWXIuhCR6Nxrt3VuLc4F1zwV3KufcK5VyHvnXuY8cHT0Xkg1Oi9a5x07kvKOq99K3mlA9Sq0Cv4HwdF4CgQw9iFH4AkNo0dwgyKMHIyQYocgxxSBgcqhRBAqA0DhZMKQwAgWTD0TkNBsgMDkDUJmYsIjxFEEkAA5OEe8K5ziNGcTkMICMBhMwOoIUwDYvHqU-CIMJoS2YhPLAZAJRkVz5RXGZLxOYowczScNKc7MRBeSiWzfUvYEmiHyYMTMig7jlLKUad0zwljFP6E8U4Sw4n0zqScW4eSXQiBaTsLw7BcCuBUBgZoYoQwCBSLQTAdIKBXwUS4kAAAKbRXg0aYFMGAIYTBFEAEpuBAA noborder}}+{{url>https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgzCAMB0l3BOJyWoSALNATAVmwIyQAc28kAbNgOzrbEi6OSMCmAtAQQFBnUjswYCiAIYMAsPlHSJAQUi9I-QcNH1J0gmUwg5PPpLVdsm09pbzsSlUJEIRgrZAnyw3AB4gEppkQkMEgQMAJqeAtgYDI7YauhBDABC4YIYLLYaRLrBeik05gQRuH6u4CwAOgAOedSmGOjseEyyZSBV3BgEDWCmDlDeIoUY3ADuAsQM2JHjk2lQ3ACyoi6MgytzptjQuIsgE6t7gSyb27sWB+cbIFs7SwRquINqVzfcADIR+4+fR9eiIAAzACGABsAM6sRjzD6CFbfWGuY79YHgyFMRQwuwHVQiK4sFEQqEYyQ6eE9SxIwoEtHzQyNOZiCSNb4EFqJRR0yIsbQMZmDHQSRIGZQRBnaIr8ywgRLWTlzPp85alRLuGFTCTw9WYSmA0GE9HvUUsTVzPG61FEw2NEjYsi-czm-XQgRdXyOV3av5UvU0xRjRpfGL7YgsP2SOGOMArWrzf3k7HxigSMMBhghowidMprHpnGicSxjPqXlYmPZtQxhEgMujEksJNFhvlkQNvMmQt5hVY77N-NMrGEETZ8Vc8bHOYp-ajwQ6Ue9rVtjS99t52KmbMaad9Oe19jbuZ7kR2jtT6bsdNayfHG2H642q+iHwulYelP+R+mTgrHf+9-TgcTruAEsJ2Q5AZuB4Dj0HYDme8Y-kWg6SCOgH+qO9AgUhUbJru6H7I00zYR2a5lEy6F9Cmo5EfSLAUbu77UVRKyUdB1F9ERlFip+5FgWhGz4aOPIngwjGEcxuEECI1HphxuEMgWNHXFmcm0TEcw9ipICtoJ4qUdM2lzE2mmVseNZ8dyGiKWZRp7Jh8k4b+T65qOylodMmr6Q5EQ2pqNrWZwT7wh6ymdA0o4KsefRDPR35BSssn+hecUSHgvFjtclbbv5U74Re+wpuxKy3vkwlKby+yyaFRZdisUWYB0XSHAM6iqf8wxjPcIgsmorktRcOjWe+LIrEZHU9SwwahrWk1NYyhb7EJ+zWUt5gDeutbvg2+yjU1W0MO2Yb7H0gbzftBZTstkx7cWp2iOKU4aWMU5RE1dGGAtGgxp1ugAMrCvwC0Fl9LQ-RyIoLeKX0CiAP2yuDDB9F96ww+4cabDGF3rU9V0BMcl3XN8MYlYdszRCly149x5NY6KGVUwTaX0gzJLMxu1xnpM0xvkeB6SXTHZ8yVRPZezTKTDWdJCQqc3voK7iS5k4qcAWlzSnDKhCUJytBNDQo2C6mQKTLbKKAAhCAACSAB2ABurAAE4AC4O-0AAaYAADSu9gXsEF7LAAPTux7Qc+0HftByw1t207LvkOUACOXBcOUVvwAQifJ5AqdwEQmdEBnaeQCnSdENnadl5nxeF8XxdV3nFd50nuc58nVdwKnZfZwn1eF2XGc91w5cF93td99Xie18Plc9xPVtDwPufT036ed23s8d1bSi8lLjh9HV0cO879tEv0ihdI46YeuwX1PhA7Us9OguoeM-MNsT3DmwACiCACuYKFBYMHb2vt-YgBCJ7EIPsQh+xCCwH+-9AHwEni3IuddZ4NyXiglORcS5T1bh3QedcK7oOruXMhk826NwHl3TuyDm7EP7vXYetd67jxLkPaehCF5r3QVnNeTdk593XvHLex5zytXYC9OqCCAGn2NOECgQxqyFH4AkNoCdFGFFUCo8M2QGCJxSBgSM2iwAqA0BIKMAgUhgEgiBHovIaD6NyF4RoGQDYRHiKIJIABycIT4ZxKk8c4sIaNmqBMeizVs0EDr0RbP2UwO1AllmrDTQJWtoL+WgrmGJBYwx8xyaYXqnAuruniYWY0Q5UmFj5iyTMU07ilNELiJErwliVP6C8U4SwImRjqK07pLomklM9CcHYrjcCuBUBgZoUorHsBSLQTATIKD3zUd4kAAAKQxXhsC4lMGAIYTB1EAEpwIfi0kEJ8YYGwegbEZJY9yJANhemM7gQA noborder}}
 </well></WRAP> </well></WRAP>
  
   - Why is ''10'' + ''14'' = ''8''? What happens to other values? \\ The input values ''A'' and ''B'' can be changed by clicking on the bit values.    - Why is ''10'' + ''14'' = ''8''? What happens to other values? \\ The input values ''A'' and ''B'' can be changed by clicking on the bit values. 
   - Try to analyze how ''B''' (shown in the brackets) is derived from ''B''   - Try to analyze how ''B''' (shown in the brackets) is derived from ''B''
-  - Have a look at the wiki page of the {{wp>Ones' complement}} to understand how negative numbers are represented in a microcontroller.+  - Have a look at the wiki page of the {{wp>Two'complement}} to understand how negative numbers are represented in a microcontroller. \\ What does the following representation show? \\{{drawio>introduction_to_digital_systems:SignedIntCircle.svg}}
   - Imagine that you have to rescue data from an old storage device. The interesting bits are given by the boxed area in <imgref picex01>. The bytes are LSB 0 oriented.    - Imagine that you have to rescue data from an old storage device. The interesting bits are given by the boxed area in <imgref picex01>. The bytes are LSB 0 oriented. 
     - What are these values in an unsigned integer?     - What are these values in an unsigned integer?
-    - What are these values in signed integers based on the ones' complement? +    - What are these values in signed integers based on the Two'complement?