Inhaltsverzeichnis

Geometric Distribution of Charges

In previous chapters, only single charges (e.g., $Q_1$, $Q_2$) were considered.

Electric Field Lines

Electric field lines result from the (fictitious) path of a sample charge. Thus, also electric field lines of several charges can be determined. However, these also result from a superposition of the individual effects - i.e., electric field - at a measuring point $P$.

The superposition is sketched in Abbildung 4: Two charges $Q_1$ and $Q_2$ act on the test charge $q$ with the forces $F_1$ and $F_2$. Depending on the positions and charges, the forces vary, and so does the resulting force. The simulation also shows a single field line.

Abb. 1: examples of field lines

For a full picture of the field lines between charges, one has to start with a single charge. The in- and outgoing lines on this charge are drawn equidistant from the charge. This is also true for the situation with multiple charges. However, there, the lines are not necessarily run radially anymore. The test charge is influenced by all the single charges, and therefore, the field lines can get bent.

Abb. 2: examples of field lines

electrical_engineering_and_electronics_1:examplesforfieldlines.svg

In Abbildung 3 the field lines are shown. The additional „equipotential lines“ will be discussed later and can be deactivated by clearing the checkmark Show Equipotentials. Try the following in the simulation:

Abb. 3: examples of field lines

Abb. 4: examples of field lines in 3D


Note:

  1. The electrostatic field is a source field. This means there are sources and sinks.
  2. From the field line diagrams, the following can be obtained:
    1. Direction of the field ($\hat{=}$ parallel to the field line).
    2. Magnitude of the field ($\hat{=}$ number of field lines per unit area).
  3. The magnitude of the field along a field line is usually not constant.

Note:

Field lines have the following properties:
  • The electric field lines have a beginning (at a positive charge) and an end (at a negative charge).
  • The direction of the field lines represents the direction of a force onto a positive test charge.
  • There are no closed field lines in electrostatic fields. The reason for this can be explained by considering the energy of the moved particle (see later subchapters).
  • Electric field lines cannot cut each other: This is based on the fact that the direction of the force at a cutting point would not be unique.
  • The field lines are always perpendicular to conducting surfaces
  • The inside of a conducting component is always field-free.
  • The density of the field lines is a measure for the electric field density.

Types of Fields depending on the Charge Distribution

There are two different types of fields:

In homogeneous fields, magnitude and direction are constant throughout the field range. This field form is idealized to exist within plate capacitors. e.g., in the plate capacitor (Abbildung 5), or the vicinity of widely extended bodies.

Abb. 5: Field lines of a homogeneous field
electrical_engineering_and_electronics_1:fieldlinesofahomogeneousfield.svg

For inhomogeneous fields, the magnitude and/or direction of the electric field changes from place to place. This is the rule in real systems, even the field of a point charge is inhomogeneous (Abbildung 6).

Abb. 6: Field lines of an inhomogeneous field
electrical_engineering_and_electronics_1:fieldlinesofaninhomogeneousfield.svg

Dielectric strength

In Block03 we had a short look on conductivity of matter.
Here, we want to have again a look onto isolators.

Material Dielectric strength $E_0$ in ${ \rm kV/mm}$
air $\rm 0.1...0.3$
SF6 gas $\rm 8$
insulating oils $\rm 5...30$
vacuum $\rm 20...30$
quartz $\rm 30...40$
PP, PE $\rm 50$
PS $\rm 100$
distilled water $\rm 70$
Tab. 1: Dielectric strength

Exercises

Task 1.1.2 Field lines

Sketch the field line plot for the charge configurations given in Abbildung 7.
Note:

  • The overlaid picture is requested.
  • Make sure that it is a source field.

You can prove your result with the simulation Abbildung 4.

Abb. 7: Task on field lines

electrical_engineering_and_electronics_1:taskonfieldlines.svg

Task 1.2.5 Forces on Charges (exam task, ca 8 % of a 60 minute exam, WS2020)

electrical_engineering_2:coulombkraftgeometriei.svg

Given is an arrangement of electric charges located in a vacuum (see picture on the right).
The charges have the following values:
$Q_1=7 ~\rm{µC}$ (point charge)
$Q_2=5 ~\rm{µC}$ (point charge)
$Q_3=0 ~\rm{C}$ (infinitely extended surface charge)

$\varepsilon_0=8.854\cdot 10^{-12} ~\rm{F/m}$ , $\varepsilon_r=1$

1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$.

Tips for the solution

  • Which equation is to be used for the force effect of charges?
  • How can the distance between the two charges be determined?

Solution

\begin{align*} F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {r^2}}} \quad && | \text{with } r=\sqrt{\Delta x^2 + \Delta y^2} \\ F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {\Delta x^2 + \Delta y^2}}} \quad && | \text{Insert numerical values, read off distances: } \Delta x = 5~\rm{dm}, \Delta y = 3~\rm{dm} \\ F_C &= {{{1} \over {4\pi\cdot 8.854\cdot 10^{-12} ~\rm{F/m}}} \cdot {{7 \cdot 10^{-6} ~\rm{C} \cdot 5 \cdot 10^{-6} ~\rm{C}} \over { (0.5~\rm{m})^2 + (0.2~\rm{m})^2}}} \end{align*}

Result

\begin{align*} |\vec{F}_C| = 1.084 ~\rm{N} \rightarrow 1.1 ~\rm{N} \end{align*}

2. is this force attractive or repulsive?

Tips for the solution

  • What force effect do equally or oppositely charged bodies exhibit on each other?

Solution

The force is repulsive because both charges have the same sign.


Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=100 ~\rm{kV/m}$ results.
What force (magnitude) now results on $Q_1$?

Tips for the solution

  • Which equation is to be applied for the force action in the homogeneous field?

Solution

\begin{align*} F_C &= E \cdot Q_1 \quad && | \text{Insert numerical values} \\ F_C &= 100 \cdot 10^3 ~\rm{V/m} \cdot 7 \cdot 10^{-6} ~\rm{C} \end{align*}

Result

\begin{align*} |\vec{F}_C| = 0.7 ~\rm{N} \end{align*}

Task 1.2.6 Variation: Forces on Charges (exam task, ca 8% of a 60 minute exam, WS2020)

electrical_engineering_2:coulombkraftgeometrieii.svg

Given is an arrangement of electric charges located in a vacuum (see picture on the right).
The charges have the following values:
$Q_1=5 ~\rm{µC}$ (point charge)
$Q_2=-10 ~\rm{µC}$ (point charge)
$Q_3= 0 ~\rm{C}$ (infinitely extended surface charge)

$\varepsilon_0=8.854\cdot 10^{-12} ~\rm{F/m}$ , $\varepsilon_r=1$

1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$.

Result

\begin{align*} |\vec{F}_C| = 1.321 ~\rm{N} \rightarrow 1.3 ~\rm{N} \end{align*}

2. is this force attractive or repulsive?

Solution

The force is repulsive because both charges have the same sign.


Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=500 ~\rm{kV/m}$ results.
What force (magnitude) now results on $Q_1$?

Result

\begin{align*} |\vec{F}_C| = 2.5 ~\rm{N} \end{align*}

Task 1.2.7 Variation: Forces on Charges (exam task, ca 8% of a 60 minute exam, WS2020)

electrical_engineering_2:coulombkraftgeometrieiii.svg

Given is an arrangement of electric charges located in a vacuum (see picture on the right).
The charges have the following values:
$Q_1= 2 ~\rm{µC}$ (point charge)
$Q_2=-4 ~\rm{µC}$ (point charge)
$Q_3= 0 ~\rm{C}$ (infinitely extended surface charge)

$\varepsilon_0=8.854\cdot 10^{-12} ~\rm{F/m}$ , $\varepsilon_r=1$

1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$.

Result

\begin{align*} |\vec{F}_C| = 0.3595 ~\rm{N} \rightarrow 0.36 ~\rm{N} \end{align*}

2. is this force attractive or repulsive?

Solution

The force is attractive because the charges have different signs.


Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=100 ~\rm{kV/m}$ results.
What force (magnitude) now results on $Q_1$?

Result

\begin{align*} |\vec{F}_C| = 0.4 ~\rm{N} \end{align*}

Embedded resources

Field lines of various extended charged objects