Well, again
For checking your understanding please do the following exercises:
Up to now, we investigated the induction of electric voltages and currents based on the change of an external flux ${\rm d}\Psi / {\rm d}t$. For the induced current $i_{\rm ind}$, we found that it counteracts the change of the external flux (Lenz law).
But what happens, when there is no external field - only a coil which creates the flux change itself (see Abbildung 1)?
To understand this, we will investigate the situation for a long coil (Abbildung 2).
The created field density of the coil can be derived from Ampere's Circuital Law
\begin{align*} \theta(t) &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} \\ &= \int & \vec{H}_{\rm inner}(t) \cdot {\rm d}\vec{s} & + & \int \vec{H}_{\rm outer}(t) \cdot {\rm d} \vec{s} \\ &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} & + & 0 \\ &= & {H}(t) \cdot l \\ \end{align*}
With magnetic voltage $\theta(t) = N \cdot i$ this lead to the magnetic flux density $B(t)$
\begin{align*} N \cdot i &= {H}(t) \cdot l \\ {H}(t) &= {{N \cdot i }\over {l}} \\ {B}(t) &= \mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \\ \end{align*}
Based on the magnetic flux density $B(t)$ it is possible to calculate the flux $\Phi(t)$:
\begin{align*} \Phi(t) &= \iint_A \vec{B}(t) \cdot {\rm d}\vec{A} \\ &= \iint_A \mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \cdot {\rm d}A \\ &= \mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \cdot A \\ \end{align*}
The changing flux $\Phi$ is now creating an induced electric voltage and current, which counteracts the initial change of the current. This effect is called Self Induction. The induced electric voltage $u_{\rm ind}$ is given by:
\begin{align*} u_{\rm ind} &= - N \cdot {{{\rm d} \Phi(t)}\over{{\rm d}t}} \\ &= - N \cdot {{{\rm d} (\mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \cdot A)}\over{{\rm d}t}} \\ &= - N \cdot \mu_0 \mu_{\rm r} \cdot {{N \cdot A }\over {l}} \cdot {{{\rm d}i}\over{{\rm d}t}} \\ \end{align*}
\begin{align*} \boxed{ u_{\rm ind} = - \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \cdot {{{\rm d}i}\over{{\rm d}t}} \\ } \\ \text{for a long coil} \end{align*}
The result means that the induced electric voltage $u_{\rm ind}$ is proportional to the change of the current ${{\rm d}\over{{\rm d}t}}i$. The proportionality factor is also called Self-inductance $L$ (or often simply called inductance).
The inductance is another passive basic component of the electric circuit. Besides the ohmic resistor $R$ and the capacitor $C$, the inductor $L$ is the lump component entailing the inductance.
Generally, the inductance is defined by: \begin{align*} \boxed{ L = \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\ } \end{align*}
The inductance $L$ can also be described differently based on Lenz law $u_{\rm ind} = - {{\rm d}\over{{\rm d}t}}\Psi(t)$ :
\begin{align*} L &= \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\ &= {{{d \Psi(t)}/{dt}}\over{{\rm d}i / {\rm d}t}} \\ \end{align*}
\begin{align*} \boxed{ L = {{ \Psi(t)}\over{i}} } \end{align*}
One can also consider an inductor a „conservative person“: it does not like to see abrupt changes in the passing current. It reacts to any change in the current with a counteracting voltage since the current change leads to a changing flux and - therefore - an induced voltage. The Abbildung 3 shows an inductor in series with a resistor and a switch (any real switch also behaves as a capacitor, when open). Once the simulation is started, the inductor directly counteracts the current, which is why the current only slowly increases.
The unit of the inductance is $\rm 1 ~Henry = 1 ~H = 1 {{Vs}\over{A}} = 1{{Wb}\over{A}} $
Mathematically the voltages can be described in the following way:
\begin{align*} u_0 &= u_R &+ &u_L \\ &= i \cdot R & + & {{{\rm d}\Psi}\over{{\rm d}t}} \\ &= i \cdot R & + &L \cdot {{{\rm d}i}\over{{\rm d}t}} \\ \end{align*}
In the last sub-chapter, the formula of a long coil was already investigated. By these, the inductance of a long coil is
\begin{align*} \boxed{L_{\rm long \; coil} = \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}}} \end{align*}
The toroidal coil was analyzed in the last chapter(see magnetic Field Strength Part 1: Toroidal Coil). Here, a rectangular intersection a assumed (see Abbildung 4).
This leads to
\begin{align*} H(t) = {{N \cdot i}\over {l}} \end{align*}
with the mean magnetic path length (= length of the average field line) $l = \pi(r_{\rm o} + r_{\rm i})$:
\begin{align*} H(t) = {{N \cdot i}\over { \pi(r_{\rm o} + r_{\rm i})}} \end{align*}
The inductance $L$ can be calculated by
\begin{align*} L_{\rm toroidal \; coil} &= {{ \Psi(t)}\over{i}} \\ &= {{ N \cdot \Phi(t)}\over{i}} \\ \end{align*}
With the magnetic flux density $B(t) = \mu_0 \mu_{\rm r} H(t) = \mu_0 \mu_{\rm r} {{i \cdot N }\over {l}}$ and the cross section $A = h (r_{\rm o} - r_{\rm i})$, we get:
\begin{align*} \quad \quad L_{\rm toroidal \; coil} &= {{ N \cdot \mu_0 \mu_{\rm r} {{i \cdot N } \over { \pi(r_{\rm o} + r_{\rm i})}} \cdot h(r_{\rm o} - r_{\rm i})}\over{i}} \\ &= {{ N^2 \cdot \mu_0 \mu_{\rm r} \cdot h(r_{\rm o} - r_{\rm i})}\over{ \pi(r_{\rm o} + r_{\rm i})}} \\ \end{align*}
\begin{align*} \boxed{ L_{\rm toroidal \; coil} = \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{ h(r_{\rm o} - r_{\rm i})}\over{ \pi(r_{\rm o} + r_{\rm i})}} } \end{align*}
Focus here: uncoupled inductors!
Based on $L = {{ \Psi(t)}\over{i}}$ and Kirchhoff's mesh law ($i=\rm const$) the series circuit of inductions can be interpreted as a single current $i$ which generates multiple linked fluxes $\Psi$. Since the current must stay constant in the series circuit, the following applies for the equivalent inductor of a series connection of single ones:
\begin{align*} L_{\rm eq} &= {{\sum_i \Psi_i}\over{I}} = \sum_i L_i \end{align*}
A similar result can be derived from the induced voltage $u_{ind}= L {{{\rm d}i}\over{{\rm d}t}}$, when taking the situation of a series circuit (i.e. $i_1 = i_2 = i_1 = ... = i_{\rm eq}$ and $u_{\rm eq}= u_1 + u_2 + ...$):
\begin{align*} & u_{\rm eq} & = &u_1 & + &u_2 &+ ... \\ & L_{\rm eq} {{{\rm d}i_{\rm eq} }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i_{1} }\over{{\rm d}t}} & + &L_{2} {{di_{2} }\over{dt}} &+ ... \\ & L_{\rm eq} {{{\rm d}i }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i }\over{{\rm d}t}} & + &L_{2} {{di }\over{dt}} &+ ... \\ & L_{\rm eq} & = &L_{1} & + &L_{2} &+ ... \\ \end{align*}
For parallel circuits, one can also start with the principles based on Kirchhoff's mesh law:
\begin{align*} u_{\rm eq}= u_1 = u_2 = ... \\ \end{align*}
and Kirchhoff's nodal law:
\begin{align*} i_{\rm eq}= i_1 + i_2 + ... \\ \end{align*}
Here, the formula for the induced voltage has to be rearranged:
\begin{align*} u_{\rm ind} &= L {{{\rm d}i}\over{{\rm d}t}} \quad \quad \quad \quad \bigg| \int(){\rm d}t \\ \int u_{\rm ind} {\rm d}t &= L \cdot i \\ i &= {{1}\over{L}} \cdot \int u_{\rm ind} {\rm d}t \\ \end{align*}
By this, we get:
\begin{align*} i_{\rm eq} &=& i_1 &+& i_2 &+& ... \\ {{1}\over{L_{\rm eq}}} \cdot \int u_{\rm eq} {\rm d}t &=& {{1}\over{L_1}} \cdot \int u_{1} {\rm d}t &+& {{1}\over{L_2}} \cdot \int u_{2} {\rm d}t &+& ... \\ {{1}\over{L_{\rm eq}}} \cdot \int u {\rm d}t &=& {{1}\over{L_1}} \cdot \int u {\rm d}t &+& {{1}\over{L_2}} \cdot \int u {\rm d}t &+& ... \\ {{1}\over{L_{\rm eq}}} &=& {{1}\over{L_1}} &+& {{1}\over{L_2}} &+& ... \\ \end{align*}
A coil with a length of $30 ~\rm cm$ and a radius of $2 ~\rm cm$ has $500$ turns.
The current through the coil changes linearly from $0$ to $3 ~\rm A$ in $0.02 ~\rm ms$.
The arrangement is located in air ($\mu_{\rm r}=1$).
$\mu_0= 4\pi \cdot 10^{-7} ~\rm Vs/Am$
1. Calculate the (self-)inductance of the coil.
2. Determine the induced voltage in the coil during the change in current.
Accidentally, a motor with an inductance of $L=50 ~\rm \mu H$ is connected to a DC voltage source, which is fused with a circuit breaker.
The circuit breaker opens the circuit At $t_0=0$ with a current of $I=63 ~\rm A$. The current is reduced linearly down to $0 ~\rm A$ within $1 ~\rm \mu s$.
(The inner resistance of the motor shall be neglected.)
1. Draw the circuit (the circuit breaker can be drawn as a switch), with all voltage and current arrows.
2. What is the maximum magnitude of the voltage, which the circuit breaker has to withstand?
Sketch the diagrams $i(t)$ and $u_{\rm ind} (t)$ with the calculated value of the induced voltage.
The first one is not given in the exercise, and therefore not considered here.
The induced voltage can be calculated by linearizing the following: \begin{align*} u_{\rm ind} (t) &= - L {{ {\rm d} i}\over{ {\rm d} t }}\\ \rightarrow u_{\rm ind} (t) &= - L {{ \Delta i}\over{ \Delta t }}\\ \end{align*}
With the given details: \begin{align*} u_{\rm ind} (t) &= - L {{ 0 - I}\over{ t_1 - t_0 }}\\ &= 50 \cdot 10^{-6} {~\rm H} {{ 63 ~\rm A}\over{ 1 \cdot 10^{-6} ~\rm s}}\\ &= 3150 {{ ~\rm Vs}\over{ ~\rm A}} \; {{ ~\rm A}\over{ ~\rm s}}\\ \end{align*}
Calculate the inductance for the following settings
1. Cylindrical long air coil with $N=390$, winding diameter $d=3.0 ~\rm cm$ and length $l=18 ~\rm cm$
\begin{align*} L_1 &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \\ &= 4\pi \cdot 10^{-7} {\rm {{H}\over{m}}} \cdot 1 \cdot (390)^2 \cdot {{\pi \cdot (0.03~\rm m)^2 }\over {0.18 ~\rm m}} \end{align*}
2. Similar coil geometry as explained in 1. , but with double the number of windings
3. Two coils as explained in 1. in series
4. Similar coil geometry and number of windings as explained in 1. , but with an iron core ($\mu_{\rm r}=1000$)
A cylindrical air coil (length $l=40 ~\rm cm$, diameter $d=5.0 ~\rm cm$, and a number of windings $N=300$) passes a current of $30 ~\rm A$. The current shall be reduced linearly in $2.0 ~\rm ms$ down to $0.0 ~\rm A$.
What is the amount of the induced voltage $u_{\rm ind}$?
The requested induced voltage can be derived by:
\begin{align*} L &= \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\ \rightarrow \left|u_{\rm ind}\right| &= L \cdot \left|{{{\rm d}i}\over{{\rm d}t}}\right| \\ &= L \cdot \left|{{\Delta i}\over{\Delta t}}\right| \\ \end{align*}
Therefore, we just need the inductance $L$, since ${{\Delta i}\over{\Delta t}}$ is defined as $30 ~\rm A$ per $2 ~\rm ms$:
\begin{align*} L &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \\ \end{align*}
So, the result can be derived as: \begin{align*} \left|u_{\rm ind}\right| &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \cdot \left|{{\Delta i}\over{\Delta t}}\right| \\ &= 4\pi \cdot 10^{-7} {\rm {{H}\over{m}}} \cdot 1 \cdot (300)^2 \cdot {{\pi \cdot (0.05~\rm m)^2 }\over {0.40 ~\rm m}} \cdot {{30 ~\rm A}\over{2 ~\rm ms}} \end{align*}
A coil with the inductance $L=20 ~\rm µH$ passes a current of $40 ~\rm A$. The current shall be reduced linearly in $5 ~\rm µs$ down to $0 ~\rm A$ (see Abbildung 5).
Explanation (video): …