Exercise E11 Signal Analysis
(written test, approx. 6 % of a 120-minute written test, SS2021)
At an AC consumer, the following functions for voltage and current were measured:
- $u(t) = 50{~\rm V} \cdot \cos (6000 {{1}\over{\rm s}} \cdot t + 4) $
- $i(t) = 30{~\rm A} \cdot \sin (6000 {{1}\over{\rm s}} \cdot t + 5) $
a) Determine the amplitude values $\hat{U}$, $\hat{I}$ and the RMS values $U$, $I$
- The amplitude values $\hat{U}$, $\hat{I}$ are given directly by the coefficient of the cosine and sine functions
- For the RMS values of sinusoidal functions the amplitudes have to be multiplied with ${{1}\over{2}}\sqrt{2}$
- $\hat{U} = 50{~\rm V}$
- $\hat{I} = 30{~\rm A}$
RMS values:
- $U = 35.4{~\rm V}$
- $I = 21.2{~\rm A}$
b) Determine the frequency $f$ and the phase angle $\varphi$ in degrees (°). (Independent)
For the phase $\varphi$, we have to subtract $\varphi_i $ from $\varphi_u$.
But to get these values, both the $u(t)$ and $i(t)$ need to have the same sinusoidal function!
Therefore:
- $\varphi_i = 5$
- $\varphi_u = 4 + {{\pi}\over{2}}$
By this we get for $\varphi$ \begin{align*} \varphi &= \varphi_u - \varphi_i \\ &= 4 + {{\pi}\over{2}} - 5 \\ &= 2.14159... \\ \end{align*}
Converted in degree: \begin{align*} \varphi &= 2.14159... \cdot {{360°}\over{2\pi}} \\ &= 32.7042...° \\ \end{align*}
- $f = 955 ~\rm Hz$
- $\varphi = +32.7°$
c) Is the measured element resistive-capacitive or resistive-inductive?
The quantities are available in the consumer arrow system. (hard)