Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_1:aufgabe_7.2.6_mit_rechnung [2021/10/14 18:13]
slinn
electrical_engineering_1:aufgabe_7.2.6_mit_rechnung [2024/02/08 15:40] (aktuell)
mexleadmin
Zeile 1: Zeile 1:
-<panel type="info" title="Excercise 7.2.6temperaturabhängiger Widerstand einer Wicklung (Klausuraufgabe, ca 11% einer 60minütigen Klausur, WS2020)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Exercise 5.2.3Charging and Discharging of RC elements (exam task, ca11 % of a 60-minute exam, WS2020)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
 <WRAP right> {{:elektrotechnik_1:schaltung_klws2020_3_2_1.jpg?400|schaltung_klws2020_3_2_1.jpg}}</WRAP> <WRAP right> {{:elektrotechnik_1:schaltung_klws2020_3_2_1.jpg?400|schaltung_klws2020_3_2_1.jpg}}</WRAP>
  
-Gegeben ist die nebenstehende Schaltung mit+The circuit shown right is given with the following data:
  
-  * $U = 10 V$ +  * $U = 10 ~{\rm V}
-  * $I = 4 mA$ +  * $I = 4 ~{\rm mA}
-  * $R_1 = 100 \Omega, R_2 = 80 \Omega, R_3 = 50 \Omega, R_4 = 10 \Omega$ +  * $R_1 = 100 ~\Omega, R_2 = 80 ~\Omega, R_3 = 50 ~\Omega, R_4 = 10 ~\Omega$ 
-  * $C = 40 nF$+  * $C = 40 ~{\rm nF}$
  
-Zu Beginn ist der Kondensator entladenalle Schalter sind geöffnetDer Schalter S1 wird zum Zeitpunkt t = 0 s geschlossen.+At firstthe voltage drop on the capacitor $u_C = 0$, and all switches are openThe switch S1 will be closed at $t = 0$.
  
-1. Bestimmen Sie die Zeitkonstante $\tau$ für diesen Ladevorgang.+<button size="xs" type="link" collapse="Loesung_7_2_6_6_Simu">{{icon>eye}} Simulation</button><collapse id="Loesung_7_2_6_6_Simu" collapsed="true"> 
  
-<button size="xs" type="link" collapse="Loesung_7_2_6_1_Tipps">{{icon>eye}} Tipps</button><collapse id="Loesung_7_2_6_1_Tipps" collapsed="true">+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjOB0AMt-CwFMC0B2E1IGYAsBOaPAJnwFY1cA2MADlzCpDIjJF22dTDACgA3EMWK4Q2MsSEjwaJtEzt5YeSsyQyvAM5TRYWUNq0Zc8CABmAQwA2mpLwBOBo3qbZ6xhcugOx7l79FiMhNabwBjAKFgyPFJeVxUIxVeAHcYiR0xDO9tN119XFCPJXNrWx9CpQKi2IUybzS8rMlK5sxU9hqMilds3gBLZn1iNEketpUYaFwfcZGx-TBiJPAGoaYlowIN5fbtDklN9nwdlYhLGzs0g-BdpqO1+7u-fW8Ae3ZTJWJsaDip6AQLBwIFCT6cACuAH0AMK8IA noborder}} </WRAP>
  
-  Welche Ersatzschaltung ergibt sich durch die Schalterstellung+</collapse> 
-  * Durch welche Größen lässt sich $\tau$ bestimmen+ 
-  * Wodurch fließt der Ladestrom?+1. Determine the time constant $\tau$ for this charging process. 
 + 
 +<button size="xs" type="link" collapse="Loesung_7_2_6_1_Tipps">{{icon>eye}} Tips</button><collapse id="Loesung_7_2_6_1_Tipps" collapsed="true"> 
 + 
 +  What equivalent circuit can be found for the mentioned states of the switches
 +  * What parameter do you need to determine $\tau$? 
 +  * The charging current is flown through which component?
  
 </collapse> </collapse>
  
-<button size="xs" type="link" collapse="Loesung_7_2_6_1_Lösungsweg">{{icon>eye}} Lösungsweg</button><collapse id="Loesung_7_2_6_1_Lösungsweg" collapsed="true">+<button size="xs" type="link" collapse="Loesung_7_2_6_1_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_7_2_6_1_Lösungsweg" collapsed="true">
  
-Es ergibt sich eine Reihenschaltung von $R_1$, $R_2$ und $C$, welche durch $U$ gespeist wirdDamit wird die Zeitkonstante $\tau$ zu: \begin{align*} \tau &= (R_1 + R_2) \cdot C \\ \tau &= 180 \Omega \cdot 40 nF \end{align*}+The electrical components $R_1$, $R_2$, and $C$ are connected in series with a source $U$.  
 +The time constant $\tau$ is therefore 
 +\begin{align*}  
 +\tau &= (R_1 + R_2) \cdot C \\  
 +\tau &= 180 ~\Omega \cdot 40 ~{\rm nF}  
 +\end{align*}
  
 </collapse> </collapse>
  
-<button size="xs" type="link" collapse="Loesung_7_2_6_1_Endergebnis">{{icon>eye}} Endergebnis</button><collapse id="Loesung_7_2_6_1_Endergebnis" collapsed="true"> \begin{align*} \tau = 7,2 µs \end{align*} \\ </collapse>+<button size="xs" type="link" collapse="Loesung_7_2_6_1_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_7_2_6_1_Endergebnis" collapsed="true">  
 +\begin{align*} \tau = 7.~{\rm µs
 +\end{align*} \\  
 +</collapse>
  
-2. Welche Spannung stellt sich am Kondensator $C$ zum Zeitpunkt $t=10 µs$ ein?+2. What is the value of the voltage $u_C(t)$ drop over the capacitor $C$ at $t=10 ~{\rm µs}$?
  
-<button size="xs" type="link" collapse="Loesung_7_2_6_2_Lösungsweg">{{icon>eye}} Lösungsweg</button><collapse id="Loesung_7_2_6_2_Lösungsweg" collapsed="true">+<button size="xs" type="link" collapse="Loesung_7_2_6_2_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_7_2_6_2_Lösungsweg" collapsed="true">
  
-Es gilt: \begin{align*} U_C(t) = U \cdot (1 - e^{-t/\tau}) \\ U_C(t) = 10 V \cdot (1 - e^{-10 µs/7,2 µs}) \end{align*}+\begin{align*}  
 +U_C(t) = U           \cdot (1 - e^{-t/\tau}) \\  
 +U_C(t) = 10 ~{\rm V\cdot (1 - e^{-10 ~{\rm µs}/7.~{\rm µs}})  
 +\end{align*}
  
 </collapse> </collapse>
  
-<button size="xs" type="link" collapse="Loesung_7_2_6_2_Endergebnis">{{icon>eye}} Endergebnis</button><collapse id="Loesung_7_2_6_2_Endergebnis" collapsed="true"> \begin{align*} U_C(t) = 7,506 V -> 7,5 V \end{align*} \\ </collapse>+<button size="xs" type="link" collapse="Loesung_7_2_6_2_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_7_2_6_2_Endergebnis" collapsed="true"> 
  
-3Wie hoch ist die Energie im Kondensator, wenn dieser vollständig geladen ist?+\begin{align*} U_C(t) = 7.506 ~{\rm V} \rightarrow 7.5 ~{\rm V} \end{align*} \\ </collapse>
  
-<button size="xs" type="link" collapse="Loesung_7_2_6_3_Lösungsweg">{{icon>eye}} Lösungsweg</button><collapse id="Loesung_7_2_6_3_Lösungsweg" collapsed="true">+3. What is the value of the stored energy in the capacitor, when it is fully charged?
  
-\begin{align*} W_C &= \frac{1}{2}CU^2 \\ &= \frac{1}{2} \cdot 40nF \cdot (10V)^2 \end{align*}+<button size="xs" type="link" collapse="Loesung_7_2_6_3_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_7_2_6_3_Lösungsweg" collapsed="true"> 
 + 
 +\begin{align*}  
 +W_C &= \frac{1}{2} C U^2 \\  
 +    &= \frac{1}{2} \cdot 40~{\rm nF} \cdot (10~{\rm V})^2  
 +\end{align*}
  
 </collapse> </collapse>
  
-<button size="xs" type="link" collapse="Loesung_7_2_6_3_Endergebnis">{{icon>eye}} Endergebnis</button><collapse id="Loesung_7_2_6_3_Endergebnis" collapsed="true"> \begin{align*} W_C = 2 µJ \end{align*} \\ </collapse>+<button size="xs" type="link" collapse="Loesung_7_2_6_3_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_7_2_6_3_Endergebnis" collapsed="true">  
 +\begin{align*} W_C = 2 ~{\rm µJ\end{align*} \\  
 +</collapse>
  
-4. Bestimmen Sie die neue Zeitkonstante, die wirksam ist, wenn nach dem vollständigen Laden der Schalter S1 geöffnet und gleichzeitig S2 geschlossen wird.+4. Determine the new time constant when the switch $S_1$ will be opened and the switch $S_3$ will be closed simultaneously
  
-<button size="xs" type="link" collapse="Loesung_7_2_6_4_Lösungsweg">{{icon>eye}} Lösungsweg</button><collapse id="Loesung_7_2_6_4_Lösungsweg" collapsed="true">+<button size="xs" type="link" collapse="Loesung_7_2_6_4_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_7_2_6_4_Lösungsweg" collapsed="true">
  
-Hierbei entlädt sich der Kondensator $C$ über die in Reihe geschalteten Widerstände $R_2$ und $R_3$. \begin{align*} \tau &= (R_2 + R_3) \cdot C \\ \tau &= 130 \Omega \cdot 40 nF \end{align*}+The capacitor $C$ discharges by the series connected resistors $R_2$ und $R_3$.  
 +\begin{align*}  
 +\tau &= (R_2 + R_3) \cdot C \\  
 +     &= 130 ~\Omega \cdot 40 ~{\rm nF}  
 +\end{align*}
  
 </collapse> </collapse>
  
-<button size="xs" type="link" collapse="Loesung_7_2_6_4_Endergebnis">{{icon>eye}} Endergebnis</button><collapse id="Loesung_7_2_6_4_Endergebnis" collapsed="true"> \begin{align*} \tau = 5,2 µs \end{align*} \\ </collapse>+<button size="xs" type="link" collapse="Loesung_7_2_6_4_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_7_2_6_4_Endergebnis" collapsed="true">  
 +\begin{align*} \tau = 5.~{\rm µs
 +\end{align*} \\ </collapse>
  
-5. Nachdem der Kondensator vollständig entladen wurde, werden alle Schalter wieder geöffnetDer Schalter S4 wird für $t = 1μsgeschlossen. \\ Welche Spannung stellt sich an ein?+5. When the capacitor is empty all switches will be openedThe switch $S_4$ will be closed at $t= 0$. \\ What is the voltage $u_C$ at the capacitor after $t = 1 ~ {\rm µs}$?
  
-<button size="xs" type="link" collapse="Loesung_7_2_6_5_Tipps">{{icon>eye}} Tipps</button><collapse id="Loesung_7_2_6_5_Tipps" collapsed="true">+<button size="xs" type="link" collapse="Loesung_7_2_6_5_Tipps">{{icon>eye}} Tips</button><collapse id="Loesung_7_2_6_5_Tipps" collapsed="true">
  
-  * Durch die Stromquelle ergibt sich ein kontinuierlicher Fluss an Ladungen in den Kondensator+  * Through the current source there is a continuous flow of electric charge into the capacitor
-  * Die Widerstände auf dem Weg sind für den Strom in den Kondensator irrelevant. Sie erhöhen bei einer idealen Stromquelle nur die notwendige Spannung, um den Strom zu treiben.+  * The resistors passed by the current on the way to the capacitor are irrelevant. They only increase the voltage of an ideal current source to guarantee the current.
  
 </collapse> </collapse>
  
-<button size="xs" type="link" collapse="Loesung_7_2_6_5_Lösungsweg">{{icon>eye}} Lösungsweg</button><collapse id="Loesung_7_2_6_5_Lösungsweg" collapsed="true">+<button size="xs" type="link" collapse="Loesung_7_2_6_5_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_7_2_6_5_Lösungsweg" collapsed="true">
  
-Die Spannung $U_C$ ergibt sich allgemein über: $U_C = \frac{Q}{C}$. In diesem Fall erzeugt der konstante Strom die Ladung $Q = \int I dt = I \cdot t$ \begin{align*} U_C(t) &= \frac{Q}{C} \\ U_C(t) &= \frac{I \cdot t}{C} \\ U_C(1μs) &= \frac{4mA \cdot 1μs}{40nF} = \frac{4 \cdot 10^{-3}A \cdot 1\cdot 10^{-6}s}{40\cdot 10^{-9}F} \\ \end{align*}+The voltage $U_C$ is in general: $U_C = \frac{Q}{C}$. In this case, the constant current results in $Q = \int I {\rm d}t = I \cdot t$  
 +\begin{align*}  
 +U_C(t)   &= \frac{Q}{C} \\  
 +U_C(t)   &= \frac{I \cdot t}{C} \\  
 +U_C(1μs) &= \frac{4~{\rm mA} \cdot 1~{\rm µs}}{40~{\rm nF} 
 +          = \frac{4          \cdot 10^{-3}~{\rm A\cdot 1\cdot 10^{-6}~{\rm s}}{40\cdot 10^{-9}~{\rm F}} \\  
 +\end{align*}
  
 </collapse> </collapse>
  
-<button size="xs" type="link" collapse="Loesung_7_2_6_5_Endergebnis">{{icon>eye}} Endergebnis</button><collapse id="Loesung_7_2_6_5_Endergebnis" collapsed="true"> \begin{align*} U_C(1μs) &1V \\ \end{align*} \\ </collapse>+<button size="xs" type="link" collapse="Loesung_7_2_6_5_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_7_2_6_5_Endergebnis" collapsed="true">  
 +\begin{align*}  
 +U_C(1~{\rm µs}) &1~{\rm V} \\  
 +\end{align*} \\  
 +</collapse>
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
- 
-