Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_1:simple_circuits [2023/03/19 18:19] mexleadminelectrical_engineering_1:simple_circuits [2024/10/24 08:13] (aktuell) mexleadmin
Zeile 1: Zeile 1:
-====== 2Simple DC circuits ======+====== 2 Simple DC circuits ======
  
 So far, only simple circuits consisting of a source and a load connected by wires have been considered. \\  So far, only simple circuits consisting of a source and a load connected by wires have been considered. \\ 
Zeile 376: Zeile 376:
 {{youtube>VojwBoSHc8U}} {{youtube>VojwBoSHc8U}}
 </WRAP> </WRAP>
 +\\ \\
 +The current divider rule shows in which way an incoming current on a node will be divided into two outgoing branches.
 +The rule states that the currents $I_1, ... I_n$ on parallel resistors $R_1, ... R_n$ behave just like their conductances $G_1, ... G_n$ through which the current flows. \\
  
-The current divider rule can also be derived from Kirchhoff's current law. \\ +$\large{{I_1}\over{I_{\rm res}} = {{G_1}\over{G_{\rm res}}}$ 
-This states that, for resistors $R_1, ... R_n$ their currents $I_1, ... I_n$ behave just like the conductances $G_1, ... G_n$ through which they flow. \\ +
- +
-$\large{{I_1}\over{I_g}} = {{G_1}\over{G_g}}$ +
  
 $\large{{I_1}\over{I_2}} = {{G_1}\over{G_2}}$ $\large{{I_1}\over{I_2}} = {{G_1}\over{G_2}}$
  
-This can also be derived by Kirchhoff's current law: The voltage drop $U$ on parallel resistors $R_1, ... R_n$ is the same. When $U_1 = U_2 = ... = U$, then also $R_1 \cdot I_1 = R_2 \cdot I_2 = ... = R_{eq} \cdot I_{res}$. \\ +The rule also be derived from Kirchhoff's current law: \\ 
-Therefore, we get with the conductance: ${{I_1} \over {G_1}} = {{I_2} \over {G_2}}= ... = {{I_{eq}} \over {G_{res}}}$+  - The voltage drop $U$ on parallel resistors $R_1, ... R_n$ is the same.  
 +  - When $U_1 = U_2 = ... = U$, then the following equation is also true: $R_1 \cdot I_1 = R_2 \cdot I_2 = ... = R_{\rm eq} \cdot I_{\rm res}$. \\ 
 +  Therefore, we get with the conductance: ${{I_1} \over {G_1}} = {{I_2} \over {G_2}}= ... = {{I_{\rm eq}} \over {G_{\rm res}}}$
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
  
 +<wrap anchor #exercise_2_4_1 />
 <panel type="info" title="Exercise 2.4.1 Current divider"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.4.1 Current divider"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
Zeile 400: Zeile 403:
 In the simulation in <imgref BildNr85> a current divider can be seen. The resistances are just inversely proportional to the currents flowing through it. In the simulation in <imgref BildNr85> a current divider can be seen. The resistances are just inversely proportional to the currents flowing through it.
  
-  - What currents would you expect in each branch if the input voltage were lowered from $5V$ to $3.3V$? __After__ thinking about your result, you can adjust the ''Voltage'' (bottom right of the simulation) accordingly by moving the slider.+  - What currents would you expect in each branch if the input voltage were lowered from $5~\rm V$ to $3.3V~\rm $? __After__ thinking about your result, you can adjust the ''Voltage'' (bottom right of the simulation) accordingly by moving the slider.
   - Think about what would happen if you flipped the switch __before__ you flipped the switch. \\ After you flip the switch, how can you explain the current in the branch?   - Think about what would happen if you flipped the switch __before__ you flipped the switch. \\ After you flip the switch, how can you explain the current in the branch?
  
Zeile 407: Zeile 410:
 <panel type="info" title="Exercise 2.4.2 two resistors"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.4.2 two resistors"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-Two resistors of $18~\Omega$ and $2~\Omega$ are connected in parallel. The total current of the resistors is $3~A$. \\+Two resistors of $18~\Omega$ and $2~\Omega$ are connected in parallel. The total current of the resistors is $3~\rm A$. \\
 Calculate the total resistance and how the currents are split to the branches. Calculate the total resistance and how the currents are split to the branches.
  
Zeile 418: Zeile 421:
 The current through resistor $R_1$ is The current through resistor $R_1$ is
 \begin{equation*} \begin{equation*}
-I_1 = \frac{R_{eq}}{R_1} I =\frac{1.8~\Omega}{18~\Omega} \cdot 3~A+I_1 = \frac{R_{eq}}{R_1} I =\frac{1.8~\Omega}{18~\Omega} \cdot 3~\rm A
 \end{equation*} \end{equation*}
 The current through resistor $R_2$ is The current through resistor $R_2$ is
 \begin{equation*} \begin{equation*}
-I_2 = \frac{R_{eq}}{R_2}I = \frac{1.8~\Omega}{2~\Omega} \cdot 3~A+I_2 = \frac{R_{eq}}{R_2}I = \frac{1.8~\Omega}{2~\Omega} \cdot 3~\rm A
 \end{equation*} \end{equation*}
 </collapse> </collapse>
Zeile 428: Zeile 431:
 The values of the substitute resistor and the currents in the branches are The values of the substitute resistor and the currents in the branches are
 \begin{equation*} \begin{equation*}
-R_{eq} = 1.8~\Omega \qquad I_1 = 0.3~A \qquad I_2 = 2.7~A+R_{eq} = 1.8~\Omega \qquad I_1 = 0.3~{\rm A\qquad I_2 = 2.7~\rm A
 \end{equation*} \end{equation*}
 </collapse> </collapse>
Zeile 479: Zeile 482:
 </WRAP> </WRAP>
  
-Using Kirchhoff's voltage law, the total resistance of a series circuit (in German: Reihenschaltung, see <imgref BildNr13>) can be easily determined:+Using Kirchhoff's voltage law, the total resistance of a series circuit (in German: //Reihenschaltung//, see <imgref BildNr13>) can be easily determined:
  
-$U_1 + U_2 + ... + U_n = U_g$+$U_1 + U_2 + ... + U_n = U_{\rm res}$
  
-$R_1 \cdot I_1 + R_2 \cdot I_2 + ... + R_n \cdot I_n = R_{eq} \cdot I $+$R_1 \cdot I_1 + R_2 \cdot I_2 + ... + R_n \cdot I_n = R_{\rm eq} \cdot I $
  
 Since in a series circuit, the current through all resistors must be the same - i.e. $I_1 = I_2 = ... = I$ - it follows that: Since in a series circuit, the current through all resistors must be the same - i.e. $I_1 = I_2 = ... = I$ - it follows that:
  
-$R_1 + R_2 + ... + R_n = R_{eq} =  \sum_{x=1}^{n} R_x $+$R_1 + R_2 + ... + R_n = R_{\rm eq} =  \sum_{x=1}^{n} R_x $
  
 __In general__: The equivalent resistance of a series circuit is always greater than the greatest resistance. __In general__: The equivalent resistance of a series circuit is always greater than the greatest resistance.
 +
 +==== Application ====
 +
 +=== Kelvin-Sensing ===
 +
 +Often resistors are used to measure a current $I$ via the voltage drop on the resistor $U = R \cdot I$. Applications include the measurement of motor currents in the range of $0.1 ... 500 ~\rm A$. \\
 +Those resistors are called //shunt resistors// and are commonly in the range of some $\rm m\Omega$.
 +This measurement can be interfered by the resistor of the supply lines.
 +
 +To get an accurate measurement often Kelvin sensing, also known as {{wp>Four-terminal sensing}} or 4 wire sensing, is used.
 +This is a method of measuring electrical resistance avoiding errors caused by wire resistances. \\
 +The simulation in <imgref BildNr005> shows such a setup.
 +
 +Four-terminal sensing involves using:
 +  * a pair of //current leads// or //force leads// (with the resistances $R_{\rm cl1}$ and $R_{\rm cl2}$) to supply current to the circuit and 
 +  * a pair of //voltage leads// or //sense leads// (with the resistances $R_{\rm vl1}$ and $R_{\rm vl2}$) to measure the voltage drop across the impedance to be measured. 
 +The sense connections via the voltage leads are made immediately adjacent to the target impedance $R_{\rm s}$ at the device under test $\rm DUT$. 
 +By this, they do not include the voltage drop in the force leads or contacts. \\
 +Since almost no current flows to the measuring instrument, the voltage drop in the sense leads is negligible. 
 +This method can be a practical tool for finding poor connections or unexpected resistance in an electrical circuit.
 +
 +<WRAP>
 +<imgcaption BildNr005 | Example of a circuit>
 +</imgcaption> \\
 +{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWKsAsYBsAOdAmSYBOdAdkwUkxRB2JCRQGY6BTAWjDACgAnEIkFJnBgcAoZGRdeOBOmGiZcsCioSp86hT5y84yZwDuGwdVljqh00pVXN4y4rsbdFo444KUE-pAdnlVDhe4OgSvgBuIOzEOlrRciZhAmqiSTAIlqyYEi78Lr4ADlHZ5lk5WkxhmWAxTmVOONW1JvUmjUXecmqhIJVQPNqDHoNh0FxG-D4jA-wYaiIhaWOW3Z2L-UatQvyJDsFzGge+bsGzCz6cAB5RHIEoogy0OJi0VGBCAGoA9gA2AC4AW2Yf2Y3AAOgBnACWADtIWCwTCcKwDFDuMxIRDmDDoTCAOaQgCGMIAJgiYSgUWiMRCsTjYXirnwIEEFBxqOgEuAhKj0RDIai-gALeGI3k0vlQiF-YkAY2YTJwDCYrI5BGoKHo3JAABEAKoAFU4jxyZja-gWECqeJutRc8WoQSg-WuCCQDCQJF6QjeQgASkz0OqGOrKAJRG9RLKflxrkHNBIw3gmJGQNHGq6kIQ5F7COrfSAA3HQ7QwwQJKnwjGmW6QJgmF7sAJtUW6FmTLmEBAC6342AEKIw-2tQsqxmOUJ+yqSv2ue9C4rMKJ+09MJOeqmIZwgA noborder}}
 +</WRAP>
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 500: Zeile 529:
 The resistors can be connected in series: The resistors can be connected in series:
 \begin{equation*} \begin{equation*}
-R_{series} = 3\cdot R = 3\cdot20~k\Omega+R_{\rm series} = 3\cdot R = 3\cdot20~k\Omega
 \end{equation*} \end{equation*}
 The resistors can also be connected in parallel: The resistors can also be connected in parallel:
 \begin{equation*} \begin{equation*}
-R_{parallel} = \frac{R}{3} = \frac{20~k\Omega}{3}+R_{\rm parallel} = \frac{R}{3} = \frac{20~k\Omega}{3}
 \end{equation*} \end{equation*}
 On the other hand, they can also be connected in a way that two of them are in parallel and those are in series to the third one: On the other hand, they can also be connected in a way that two of them are in parallel and those are in series to the third one:
 \begin{equation*} \begin{equation*}
-R_{total} = R+\frac{R\cdot R}{R+R} = \frac{3}{2}R = \frac{3}{2} \cdot 20~k\Omega+R_{\rm res} = R + \frac{R\cdot R}{R+R} = \frac{3}{2}R = \frac{3}{2} \cdot 20~k\Omega
 \end{equation*} \end{equation*}
 </collapse> </collapse>
 <button size="xs" type="link" collapse="Loesung_2_4_3_2_Lösungsweg">{{icon>eye}} Final values</button><collapse id="Loesung_2_4_3_2_Lösungsweg" collapsed="true"> <button size="xs" type="link" collapse="Loesung_2_4_3_2_Lösungsweg">{{icon>eye}} Final values</button><collapse id="Loesung_2_4_3_2_Lösungsweg" collapsed="true">
 \begin{equation*} \begin{equation*}
-R_{series} = 60~k\Omega\qquad R_{parallel} = 6.7~k\Omega\qquad R_{total} = 30~k\Omega+R_{series} = 60~k\Omega\qquad R_{\rm parallel} = 6.7~k\Omega\qquad R_{\rm res} = 30~k\Omega
 \end{equation*} \end{equation*}
 </collapse> </collapse>
Zeile 566: Zeile 595:
 <imgcaption BildNr81| unloaded voltage divider> <imgcaption BildNr81| unloaded voltage divider>
 </imgcaption> \\ </imgcaption> \\
-{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWKsAsB2ATAZgGw4QhmimJGOiApJSClgFABu4O1RGL1YaOUfK1JNWHQE9bihBZIk7rywY2CXhFJxkSAEoBTAM4BLXQBcAhgDsAxtvoB3EIoAc9zFJnOOkW68nspDny6edgpsGJJY-vZhUPQADn4+0REBHBDCcfaQTnKZTr5pMXZgrOA8uaW8QZzu5b6eAObeNdI+Dk6eimgJUZICob0gADq6w6O6AKoA+gD2AK5GXo4VPctVLcv5ZZ66KzmbleAgAGYmADa61kA noborder}}+{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWKsAsB2ATAZgGw4QhmimJGOiApJSClpQKYC0YYAUAG7g7VEbfUwaHFFEpqSalOgI2QlCCyQFQkVgy8EIiKTjIkAJQYBnAJbGALgEMAdgGMGbAO4gNADleZFyz-0jPvBT5FNyCvfxd1XgwFLFDXGKg2AAcQoMS4sP4IKRTXSA9VfI9gnKSXMB5wYWLqkQiBX1rg-wBzQKalILcPXI00NISFEhEMRIUAHWMpmeMAVQB9AHkA9zqh9Yau9dKa-2MNot368BAAMysAG2NHIA noborder}}
 </WRAP> </WRAP>
  
-In the simulation in <imgref BildNr81> an unloaded voltage divider in the form of a potentiometer can be seen. The ideal voltage source provides $5~V$. The potentiometer has a total resistance of $1~k\Omega$. In the configuration shown, this is divided into $500 ~\Omega$ and $500 ~\Omega$. +In the simulation in <imgref BildNr81> an unloaded voltage divider in the form of a potentiometer can be seen. The ideal voltage source provides $5~\rm V$. The potentiometer has a total resistance of $1~\rm k\Omega$. In the configuration shown, this is divided into $500 ~\Omega$ and $500 ~\Omega$. 
-  - What voltage $U_{out}$ would you expect if the switch were closed? After thinking about your result, you can check it by closing the switch. +  - What voltage $U_{\rm O}$ would you expect if the switch were closed? After thinking about your result, you can check it by closing the switch. 
   - First, think about what would happen if you would change the distribution of the resistors by moving the wiper ("intermediate terminal"). \\ You can check your assumption by using the slider at the bottom right of the simulation.   - First, think about what would happen if you would change the distribution of the resistors by moving the wiper ("intermediate terminal"). \\ You can check your assumption by using the slider at the bottom right of the simulation.
-  - At which position do you get a $U_{out} = 3.5~V$?+  - At which position do you get a $U_{\rm O} = 3.5~\rm V$?
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
Zeile 578: Zeile 607:
 ==== The loaded Voltage Divider ==== ==== The loaded Voltage Divider ====
  
-If - in contrast to the abovementioned, unloaded voltage divider - a load $R_L$ is connected to the output terminals (<imgref BildNr15>), this load influences the output voltage.+If - in contrast to the abovementioned, unloaded voltage divider - a load $R_{\rm L}$ is connected to the output terminals (<imgref BildNr15>), this load influences the output voltage.
  
 <WRAP> <WRAP>
Zeile 590: Zeile 619:
 $ U_1 = \LARGE{{U} \over {1 + {{R_2}\over{R_L}} + {{R_2}\over{R_1}} }}$ $ U_1 = \LARGE{{U} \over {1 + {{R_2}\over{R_L}} + {{R_2}\over{R_1}} }}$
  
-or on a potentiometer with $k$ and the sum of resistors $R_s = R_1 + R_2$:+or on a potentiometer with $k$ and the sum of resistors $R_{\rm s} = R_1 + R_2$:
  
-$ U_1 = \LARGE{{k \cdot U} \over { 1 + k \cdot (1-k) \cdot{{R_s}\over{R_L}} }}$+$ U_1 = \LARGE{{k \cdot U} \over { 1 + k \cdot (1-k) \cdot{{R_{\rm s}}\over{R_{\rm L}}} }}$
  
 <imgref BildNr65> shows the ratio of the output voltage $U_1$ to the input voltage $U$ (y-axis), in relation to the ratio $k={{R_1}\over{R_1 + R_2}}$.  <imgref BildNr65> shows the ratio of the output voltage $U_1$ to the input voltage $U$ (y-axis), in relation to the ratio $k={{R_1}\over{R_1 + R_2}}$. 
-In principle, this is similar to <imgref BildNr14>, but here it has another dimension: multiple graphs are plotted. These differ by the ratio ${{R_s}\over{R_L}}$.+In principle, this is similar to <imgref BildNr14>, but here it has another dimension: multiple graphs are plotted. These differ by the ratio ${{R_{\rm s}}\over{R_{\rm L}}}$.
  
 <WRAP> <WRAP>
Zeile 603: Zeile 632:
 </WRAP> </WRAP>
  
-What does this diagram tell us? This shall be investigated by an example. First, assume an unloaded voltage divider with $R_2 = 4.0 ~k\Omega$ and $R_1 = 6.0 ~k\Omega$, and an input voltage of $10~V$. Thus $k = 0.60$, $R_s = 10~k\Omega$ and $U_1 = 6.0~V$. +What does this diagram tell us? This shall be investigated by an example. First, assume an unloaded voltage divider with $R_2 = 4.0 ~\rm k\Omega$ and $R_1 = 6.0 ~\rm k\Omega$, and an input voltage of $10~\rm V$. Thus $k = 0.60$, $R_s = 10~\rm k\Omega$ and $U_1 = 6.0~\rm V$. 
-Now this voltage divider is loaded with a load resistor. If this is at $R_L = R_1 = 10 ~k\Omega$, $k$ reduces to about $0.48$ and $U_1$ reduces to $4.8~V$ - so the output voltage drops. For $R_L = 4.0~k\Omega$, $k$ becomes even smaller to $k=0.375$ and $U_1 = 3.75~V$. If the load $R_L$ is only one-tenth of the resistor $R_s=R_1 + R_2$, the result is $k=0.18$ and $U_1=1.8~V$. The output voltage of the unloaded voltage divider ($6.0~V$) thus became less than one-third.+Now this voltage divider is loaded with a load resistor. If this is at $R_{\rm L} = R_1 = 10 ~\rm k\Omega$, $k$ reduces to about $0.48$ and $U_1$ reduces to $4.8~\rm V$ - so the output voltage drops. For $R_{\rm L} = 4.0~\rm k\Omega$, $k$ becomes even smaller to $k=0.375$ and $U_1 = 3.75~\rm V$. If the load $R_{\rm L}$ is only one-tenth of the resistor $R_{\rm s}=R_1 + R_2$, the result is $k = 0.18$ and $U_1 = 1.8~\rm V$. The output voltage of the unloaded voltage divider ($6.0~\rm V$) thus became less than one-third.
  
 What is the practical use of the (loaded) voltage divider? \\ Here are some examples:  What is the practical use of the (loaded) voltage divider? \\ Here are some examples: 
Zeile 614: Zeile 643:
 <panel type="info" title="Exercise 2.5.2 loaded voltage divider I "> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.5.2 loaded voltage divider I "> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-Determine from the circuit in <imgref BildNr15> the equation $ U_1 = {{k \cdot U} \over { 1 + k \cdot (1-k) \cdot{{R_s}\over{R_L}}}}$ where $k={{R_1}\over{R_1 + R_2}}$ and $R_s = R_1 + R_2$.\\+Determine from the circuit in <imgref BildNr15> the equation $ U_1 = {{k \cdot U} \over { 1 + k \cdot (1-k) \cdot{{R_{\rm s}}\over{R_{\rm L}}}}}$ where $k={{R_1}\over{R_1 + R_2}}$ and $R_{\rm s} = R_1 + R_2$.\\
 <button size="xs" type="link" collapse="Loesung_2_5_2_1_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_2_5_2_1_Lösungsweg" collapsed="true"> <button size="xs" type="link" collapse="Loesung_2_5_2_1_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_2_5_2_1_Lösungsweg" collapsed="true">
 According to the voltage division rule, the loaded voltage is According to the voltage division rule, the loaded voltage is
 \begin{align*} \begin{align*}
-U_1 &=\frac{\frac{R_1R_L}{R_1+R_L}}{R_2+\frac{R_1R_L}{R_1+R_L}}U \\ +U_1 &=\frac{\frac{R_1 R_L}{R_1+R_L}}{R_2+\frac{R_1 R_L}{R_1+R_L}}U \\ 
-    &=\frac{R_1 R_L}{R_2 (R_1 + R_L) + R_1 R_L} U \\ +    &=\frac{R_1 R_{\rm L}}{R_2 (R_1 + R_{\rm L}) + R_1 R_{\rm L}} U \\ 
-    &=\frac{R_1 R_L}{R_1 R_2 + R_2 R_L + R_1 R_L} U \\ +    &=\frac{R_1 R_{\rm L}}{R_1 R_2 + R_2 R_{\rm L} + R_1 R_{\rm L}} U \\ 
-    &=\frac{R_1 R_L}{R_1 R_2 + (R_1+R_2) R_L} U+    &=\frac{R_1 R_{\rm L}}{R_1 R_2 + (R_1+R_2) R_{\rm L}} U
 \end{align*} \end{align*}
-The divided resistor $R_1$ and $R_2$ are put together to form $R_S=R_1 + R_2$.+The divided resistor $R_1$ and $R_2$ are put together to form $R_{\rm s}=R_1 + R_2$.
 \begin{equation*} \begin{equation*}
-U_1=\frac{R_1 R_L}{R_1 R_2 + R_S R_L} U+U_1=\frac{R_1 R_{\rm L}}{R_1 R_2 + R_{\rm s} R_{\rm L}} U
 \end{equation*} \end{equation*}
-With the equations given there is also $R_1=k(R_1+R_2)=k R_S$ and $R_2 = R_S - R_1 = R_S - k R_S = (1-k) R_S$.+With the equations given there is also $R_1=k(R_1+R_2)=k R_{\rm s}$ and $R_2 = R_{\rm s} - R_1 = R_{\rm s} - k R_{\rm s} = (1-k) R_{\rm s}$.
 \begin{equation*} \begin{equation*}
-U_1=\frac{k R_S R_L}{k R_S (1-k) R_S R_S R_L}U+U_1=\frac{k R_{\rm s} R_{\rm L}}{k R_{\rm s} (1-k) R_{\rm s} R_{\rm s} R_{\rm L}}U
 \end{equation*} \end{equation*}
-Dividing the numerator and denominator by $R_S R_L$ yields to+Dividing the numerator and denominator by $R_{\rm s} R_{\rm L}$ yields to
 \begin{equation*} \begin{equation*}
-U_1=\frac{k}{k(1-k)\frac{R_S}{R_L}+1}U+U_1=\frac{k}{k(1-k)\frac{R_{\rm s}}{R_{\rm L}}+1}U
 \end{equation*} \end{equation*}
 </collapse> </collapse>
Zeile 641: Zeile 670:
 <panel type="info" title="Exercise 2.5.3 loaded voltage divider II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.5.3 loaded voltage divider II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-In the simulation in <imgref BildNr82> a loaded voltage divider in the form of a potentiometer can be seen. The ideal voltage source provides $5.00~V$. The potentiometer has a total resistance of $1.00~k\Omega$. In the configuration shown, this is divided into $500 ~\Omega$ and $500 ~\Omega$. The load resistance has $R_L = 1.00 ~k\Omega$. +In the simulation in <imgref BildNr82> a loaded voltage divider in the form of a potentiometer can be seen. The ideal voltage source provides $5.00~\rm V$. The potentiometer has a total resistance of $1.00~k\Omega$. In the configuration shown, this is divided into $500 ~\Omega$ and $500 ~\Omega$. The load resistance has $R_{\rm L} = 1.00 ~\rm k\Omega$. 
-  - What voltage ''U_OUT'' would you expect if the switch were closed? This is where you need to do some math! __After__ you calculated your result, you can check it by closing the switch. +  - What voltage ''U_O'' would you expect if the switch were closed? This is where you need to do some math! __After__ you calculated your result, you can check it by closing the switch. 
-  - At which position of the wiper do you get $3.50~V$ as an output? Determine the result first by means of a calculation. \\ Then check it by moving the slider at the bottom right of the simulation.+  - At which position of the wiper do you get $3.50~\rm V$ as an output? Determine the result first by means of a calculation. \\ Then check it by moving the slider at the bottom right of the simulation.
  
 <WRAP> <WRAP>
 <imgcaption BildNr82| loaded voltage divider> <imgcaption BildNr82| loaded voltage divider>
 </imgcaption> \\ </imgcaption> \\
-{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgpABZsAoAN3BppExRbbA0Kn5pUkVEdAT0ebXN14hsadgj4Qw8KGJAAlAKYBnAJa6ALgEMAdgGNt9AO7t87DJ2mPOkW6-CyXPPu7suHHIInEH+cgooKFIh7NFQ9AAOcnhsUVKpnhAi9ABOwaHx2LFhyHAexaFOKWnV4ZVxGWnx4WCsnmh4nq3tvvZdfe7JnV58I0HZCXYjfemjCbqN8xOyVBAAZiYANrrWaOTYmXOCVMcgADq6l9e6AKoA+gD2AK5G9ADmcpC1zt9fbO4gA noborder}}+{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgpABZsKBTAWjDACgA3cGmkTFbrzAZCUMTSpIq06AjbDeuISJDY0fBKIhh4UWSABKDAM4BLYwBcAhgDsAxgzYB3Pvj4YBS9wMjPv4FS9hUV8XL35VBAEI0NV1FBRFKL5EqDYAB1U8XgTFbP8IaTYAJ0jo1OxkmOQ4P0rojyycxtj6lLyc1NiwHn80PH9u3uDXAZHfTP6A0SmIwrSXKZHc6bTjdtW5lSoIADMrABtjRzRybHyVmjAZ1N4AHWMHp+MAVQB9AHsAVws2AHNVJBmp4gYDeEUgA noborder}}
 </WRAP> </WRAP>
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 660: Zeile 689:
 </WRAP> </WRAP>
  
-You wanted to test a micromotor for a small robot. Using the maximum current and the internal resistance ($R_M = 5~\Omega$) you calculate that this can be operated with a maximum of $U_{M, max}=4~V$. A colleague said that you can get $4~V$ using the setup in <imgref BildNr16> from a $9~V$ block battery. +You wanted to test a micromotor for a small robot. Using the maximum current and the internal resistance ($R_{\rm M} = 5~\Omega$) you calculate that this can be operated with a maximum of $U_{\rm M, max}=4~\rm V$. A colleague said that you can get $4~\rm V$ using the setup in <imgref BildNr16> from a $9~\rm V$ block battery. 
-  - First, calculate the maximum current $I_{M,max}$ of the motor.+  - First, calculate the maximum current $I_{\rm M,max}$ of the motor.
   - Draw the corresponding electrical circuit with the motor connected as an ohmic resistor.   - Draw the corresponding electrical circuit with the motor connected as an ohmic resistor.
-  - At the maximum current, the motor should be able to deliver a torque of $M_{max}=M(I_{M, max})= 100~mNm$. What torque would the motor deliver if you implement the setup like this? (Assumption: The torque of the motor increases proportionally to the motor current). +  - At the maximum current, the motor should be able to deliver a torque of $M_{\rm max}=M(I_{\rm M, max})= 100~\rm mNm$. What torque would the motor deliver if you implement the setup like this? (Assumption: The torque of the motor increases proportionally to the motor current). 
-  - What might a setup with a potentiometer look like that would actually allow you to set a voltage between $0.5~V$ to $4~V$ on the motor? What resistance value should the potentiometer have?+  - What might a setup with a potentiometer look like that would actually allow you to set a voltage between $0.5~\rm V$ to $4~\rm V$ on the motor? What resistance value should the potentiometer have?
   - Build and test your circuit in the simulation below. For an introduction to online simulation, see: [[circuit_design:0_tools#online_circuit_simulator]]. \\ You will essentially need the following tips for this setup:   - Build and test your circuit in the simulation below. For an introduction to online simulation, see: [[circuit_design:0_tools#online_circuit_simulator]]. \\ You will essentially need the following tips for this setup:
     - Routing connections can be activated via the menu: ''Draw'' >> ''add wire''. Afterward, you have to click on the start point and then drag it to the end mode.     - Routing connections can be activated via the menu: ''Draw'' >> ''add wire''. Afterward, you have to click on the start point and then drag it to the end mode.
Zeile 704: Zeile 733:
 </callout> </callout>
  
-At the beginning of the chapter, an example of a network was shown (<imgref BildNr91>). Here, however, one does not come directly to the solution with the set of nodes and loops. It is visible, that there are many $\Delta$-shaped (or triangle-shaped) loops resp. $Y$-shaped (or star-shaped) nodes, see <imgref BildNr98>. A method to calculate these will be discussed in more detail now.+At the beginning of the chapter, an example of a network was shown (<imgref BildNr91>). Here, however, one does not come directly to the solution with the set of nodes and loops.  
 +It is visible, that there are many $\Delta$-shaped (or triangle-shaped) loops resp. $\rm Y$-shaped (or star-shaped) nodes, see <imgref BildNr98> 
 +A method to calculate these will be discussed in more detail now.
  
 <WRAP> <WRAP>
Zeile 725: Zeile 756:
 In other words: The resistances measured between two terminals must be identical for the black box and for the known circuit. In other words: The resistances measured between two terminals must be identical for the black box and for the known circuit.
  
-For this purpose, the different resistances between the individual nodes $a$, $b$, and $c$ are now to be considered, see <imgref BildNr18>. The aim is to find out how a $\Delta$-load (triangular circuit) can be developed from a $Y$-load (star circuit) and vice versa.+For this purpose, the different resistances between the individual nodes $\rm a$, $\rm b$, and $\rm c$ are now to be considered, see <imgref BildNr18>. The aim is to find out how a $\Delta$-load (triangular circuit) can be developed from a $\rm Y$-load (star circuit) and vice versa.
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 741: Zeile 772:
 ==== Delta Circuit ==== ==== Delta Circuit ====
  
-In the delta circuit, the 3 resistors $R_{ab}^1$, $R_{bc}^1$, and $R_{ca}^1$ are connected in a loop. At the connection of the resistors, an additional terminal is implemented. \\+In the delta circuit, the 3 resistors $R_{\rm ab}^1$, $R_{\rm bc}^1$, and $R_{\rm ca}^1$ are connected in a loop. At the connection of the resistors, an additional terminal is implemented. \\
 The labeling with a superscript $\square^1$ refers to the three resistors in the next paragraphs. The labeling with a superscript $\square^1$ refers to the three resistors in the next paragraphs.
  
-For the measurable resistance between two terminals (e.g. $R_{ab}$ between $a$ and $b$), the third terminal (here: $c$) is considered as not connected to anything outside. This results in a parallel circuit of the direct delta resistor $R_{ab}^1$ with the series connection of the other two delta resistors $R_{ca}^1 + R_{bc}^1$:+For the measurable resistance between two terminals (e.g. $R_{\rm ab}$ between $\rm a$ and $\rm b$), the third terminal (here: $\rm c$) is considered as not connected to anything outside. This results in a parallel circuit of the direct delta resistor $R_{\rm ab}^1$ with the series connection of the other two delta resistors $R_{\rm ca}^1 + R_{\rm bc}^1$:
  
 <WRAP><imgcaption BildNr80 | measurable resistance between two terminals> <WRAP><imgcaption BildNr80 | measurable resistance between two terminals>
Zeile 751: Zeile 782:
 </WRAP> </WRAP>
  
-$R_{ab} = R_{ab}^1 || (R_{ca}^1 + R_{bc}^1) $ \\ +$R_{\rm ab} = R_{\rm ab}^1 || (R_{\rm ca}^1 + R_{\rm bc}^1) $ \\ 
-$R_{ab} = {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + (R_{ca}^1 + R_{bc}^1)}} =  {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} $ \\+$R_{\rm ab} = {{R_{\rm ab}^1 \cdot (R_{\rm ca}^1 + R_{\rm bc}^1)}\over{R_{\rm ab}^1 + (R_{\rm ca}^1 + R_{\rm bc}^1)}} =  {{R_{\rm ab}^1 \cdot (R_{\rm ca}^1 + R_{\rm bc}^1)}\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}} $ \\
  
 The same applies to the other connections. This results in: The same applies to the other connections. This results in:
  
 \begin{align*} \begin{align*}
-R_{ab} = {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}}  \\ +R_{\rm ab} = {{R_{\rm ab}^1 \cdot (R_{\rm ca}^1 + R_{\rm bc}^1)}\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}}  \\ 
-R_{bc} = {{R_{bc}^1 \cdot (R_{ab}^1 + R_{ca}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}}  \\ +R_{\rm bc} = {{R_{\rm bc}^1 \cdot (R_{\rm ab}^1 + R_{\rm ca}^1)}\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}}  \\ 
-R_{ca} = {{R_{ca}^1 \cdot (R_{bc}^1 + R_{ab}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \tag{2.6.1}  \end{align*}+R_{\rm ca} = {{R_{\rm ca}^1 \cdot (R_{\rm bc}^1 + R_{\rm ab}^1)}\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}} \tag{2.6.1}  \end{align*}
  
 ==== Star Circuit ==== ==== Star Circuit ====
  
-Given the idea, that the star circuit shall behave equally to the delta circuit, the resistance measured between the terminals must be similar. Also in the star circuit, 3 resistors are connected, but now in a star (or $Y$) shape. The star resistors are all connected with another node $0$ in the middle: $R_{a0}^1$, $R_{b0}^1$ and $R_{c0}^1$.+Given the idea, that the star circuit shall behave equally to the delta circuit, the resistance measured between the terminals must be similar.  
 +Also in the star circuit, 3 resistors are connected, but now in a star (or $\rm Y$) shape. The star resistors are all connected with another node $0$ in the middle:  
 +$R_{\rm a0}^1$, $R_{\rm b0}^1$ and $R_{\rm c0}^1$.
  
-Again, the procedure is the same as for the delta connection: the resistance between two terminals (e.g. $a$ and $b$) is determined, and the further terminal ($c$) is considered to be open. The resistance of the further terminal ($R_{c0}^1$) is only connected at one node. Therefore, no current flows through it - it is thus not to be considered. It results in:+Again, the procedure is the same as for the delta connection: the resistance between two terminals (e.g. $\rm a$ and $\rm b$) is determined, and the further terminal ($\rm c$) is considered to be open.  
 +The resistance of the further terminal ($R_{\rm c0}^1$) is only connected at one node. Therefore, no current flows through it - it is thus not to be considered. It results in:
  
 \begin{align*} \begin{align*}
-R_{ab} = R_{a0}^1 + R_{b0}^1  \\ +R_{\rm ab} = R_{\rm a0}^1 + R_{\rm b0}^1  \\ 
-R_{bc} = R_{b0}^1 + R_{c0}^1  \\ +R_{\rm bc} = R_{\rm b0}^1 + R_{\rm c0}^1  \\ 
-R_{ca} = R_{c0}^1 + R_{a0}^1  \tag{2.6.2}  +R_{\rm ca} = R_{\rm c0}^1 + R_{\rm a0}^1  \tag{2.6.2}  
 \end{align*} \end{align*}
  
 From equations $(2.6.1)$ and $(2.6.2)$ we get: From equations $(2.6.1)$ and $(2.6.2)$ we get:
  
-\begin{align} R_{ab} = {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} = R_{a0}^1 + R_{b0}^1 \tag{2.6.3} \end{align} +\begin{align} R_{\rm ab} = {{R_{\rm ab}^1 \cdot (R_{\rm ca}^1 + R_{\rm bc}^1)}\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}} = R_{\rm a0}^1 + R_{\rm b0}^1 \tag{2.6.3} \end{align} 
-\begin{align} R_{bc} = {{R_{bc}^1 \cdot (R_{ab}^1 + R_{ca}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} = R_{b0}^1 + R_{c0}^1 \tag{2.6.4} \end{align}   +\begin{align} R_{\rm bc} = {{R_{\rm bc}^1 \cdot (R_{\rm ab}^1 + R_{\rm ca}^1)}\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}} = R_{\rm b0}^1 + R_{\rm c0}^1 \tag{2.6.4} \end{align}   
-\begin{align} R_{ca} = {{R_{ca}^1 \cdot (R_{bc}^1 + R_{ab}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} = R_{c0}^1 + R_{a0}^1 \tag{2.6.5} \end{align}+\begin{align} R_{\rm ca} = {{R_{\rm ca}^1 \cdot (R_{\rm bc}^1 + R_{\rm ab}^1)}\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}} = R_{\rm c0}^1 + R_{\rm a0}^1 \tag{2.6.5} \end{align}
  
  
 Equations $(2.6.3)$ to $(2.6.5)$ can now be cleverly combined so that there is only one resistor on one side. \\ Equations $(2.6.3)$ to $(2.6.5)$ can now be cleverly combined so that there is only one resistor on one side. \\
-A variation is to write the formulas as ${{1}\over{2}} \cdot \left( (2.6.3) + (2.6.4) - (2.6.5) \right)$ or ${{1}\over{2}} \cdot \left(R_{ab} + R_{bc} - R_{ca}\right)$ to combine. This gives $R_{b0}^1$ \\+A variation is to write the formulas as ${{1}\over{2}} \cdot \left( (2.6.3) + (2.6.4) - (2.6.5) \right)$ or ${{1}\over{2}} \cdot \left(R_{\rm ab} + R_{\rm bc} - R_{\rm ca}\right)$ to combine. This gives $R_{\rm b0}^1$ \\
  
 \begin{align*}  \begin{align*} 
-{{1}\over{2}} \cdot \left( {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} + {{R_{bc}^1 \cdot (R_{ab}^1 + R_{ca}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} - {{R_{ca}^1 \cdot (R_{bc}^1 + R_{ab}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \right) &= {{1}\over{2}} \cdot \left( R_{a0}^1 + R_{b0}^1 + R_{b0}^1 + R_{c0}^1 - R_{c0}^1 - R_{a0}^1 \right) \\+{{1}\over{2}} \cdot \left( {{R_{\rm ab}^1 \cdot (R_{\rm ca}^1 + R_{\rm bc}^1)}\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}}  
 +                         + {{R_{\rm bc}^1 \cdot (R_{\rm ab}^1 + R_{\rm ca}^1)}\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}}  
 +                         - {{R_{\rm ca}^1 \cdot (R_{\rm bc}^1 + R_{\rm ab}^1)}\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}} \right) & 
 +{{1}\over{2}} \cdot \left(   R_{\rm a0}^1 + R_{\rm b0}^1 + R_{\rm b0}^1 + R_{\rm c0}^1 - R_{\rm c0}^1 - R_{\rm a0}^1 \right) \\
  
-{{1}\over{2}} \cdot \left( {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)} + {R_{bc}^1 \cdot (R_{ab}^1 + R_{ca}^1)} - {R_{ca}^1 \cdot (R_{bc}^1 + R_{ab}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \right) &= {{1}\over{2}} \cdot \left( 2 \cdot  R_{b0}^1  \right) \\+{{1}\over{2}} \cdot \left( {{R_{\rm ab}^1 \cdot (R_{\rm ca}^1 + R_{\rm bc}^1)} + {R_{\rm bc}^1 \cdot (R_{\rm ab}^1 + R_{\rm ca}^1)}  
 +                          - {R_{\rm ca}^1 \cdot (R_{\rm bc}^1 + R_{\rm ab}^1)}\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}} \right) & 
 +                            {{1}\over{2}} \cdot \left( 2 \cdot  R_{\rm b0}^1  \right) \\
  
-{{1}\over{2}} \cdot \left( {{R_{ab}^1 R_{ca}^1 + R_{ab}^1 R_{bc}^1 + R_{bc}^1 R_{ab}^1 + R_{bc}^1 R_{ca}^1 - R_{ca}^1 R_{bc}^1 - R_{ca}^1 R_{ab}^1}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \right) & R_{b0}^1  \\+{{1}\over{2}} \cdot \left( {{R_{\rm ab}^1 R_{\rm ca}^1 + R_{\rm ab}^1 R_{\rm bc}^1 + R_{\rm bc}^1 R_{\rm ab}^1 + R_{\rm bc}^1 R_{\rm ca}^1 - R_{\rm ca}^1 R_{\rm bc}^1 - R_{\rm ca}^1 R_{\rm ab}^1}\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}} \right) & R_{\rm b0}^1  \\
  
-{{1}\over{2}} \cdot \left( {{ 2 \cdot R_{ab}^1 R_{bc}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \right) & R_{b0}^1  \\+{{1}\over{2}} \cdot \left( {{ 2 \cdot R_{\rm ab}^1 R_{\rm bc}^1 }\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}} \right) & R_{\rm b0}^1  \\
  
-{{ R_{ab}^1 R_{bc}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} & R_{b0}^1  \\+{{ R_{\rm ab}^1 R_{\rm bc}^1 }\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}} & R_{\rm b0}^1  \\
  
 \end{align*} \end{align*}
  
-Similarly, one can resolve to $R_{a0}^1$ and $R_{c0}^1$, and with a slightly modified approach to $R_{ab}^1$, $R_{bc}^1$ and $R_{ca}^1$.+Similarly, one can resolve to $R_{\rm a0}^1$ and $R_{\rm c0}^1$, and with a slightly modified approach to $R_{\rm ab}^1$, $R_{\rm bc}^1$ and $R_{\rm ca}^1$.
  
 ==== Y-Δ-Transformation  ==== ==== Y-Δ-Transformation  ====
Zeile 811: Zeile 850:
 \text{therefore:}\quad\quad\quad\quad\quad\quad   \text{therefore:}\quad\quad\quad\quad\quad\quad  
  
-R_{a0}^1 &= {{ R_{ca}^1 \cdot R_{ab}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \\ +R_{\rm a0}^1 &= {{ R_{\rm ca}^1 \cdot R_{\rm ab}^1 }\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}} \\ 
-R_{b0}^1 &= {{ R_{ab}^1 \cdot R_{bc}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \\ +R_{\rm b0}^1 &= {{ R_{\rm ab}^1 \cdot R_{\rm bc}^1 }\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}} \\ 
-R_{c0}^1 &= {{ R_{bc}^1 \cdot R_{ca}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}}  +R_{\rm c0}^1 &= {{ R_{\rm bc}^1 \cdot R_{\rm ca}^1 }\over{R_{\rm ab}^1 + R_{\rm ca}^1 + R_{\rm bc}^1}}  
 \end{align*} \end{align*}
  
Zeile 826: Zeile 865:
 \text{therefore:}\quad\quad\quad\quad\quad\quad   \text{therefore:}\quad\quad\quad\quad\quad\quad  
  
-R_{ab}^1 &= {{ R_{a0}^1 \cdot R_{b0}^1 +R_{b0}^1 \cdot R_{c0}^1 +R_{c0}^1 \cdot R_{a0}^1 }\over{ R_{c0}^1}} \\ +R_{\rm ab}^1 &= {{ R_{\rm a0}^1 \cdot R_{\rm b0}^1 +R_{\rm b0}^1 \cdot R_{\rm c0}^1 +R_{\rm c0}^1 \cdot R_{\rm a0}^1 }\over{ R_{\rm c0}^1}} \\ 
-R_{bc}^1 &= {{ R_{a0}^1 \cdot R_{b0}^1 +R_{b0}^1 \cdot R_{c0}^1 +R_{c0}^1 \cdot R_{a0}^1 }\over{ R_{a0}^1}} \\ +R_{\rm bc}^1 &= {{ R_{\rm a0}^1 \cdot R_{\rm b0}^1 +R_{\rm b0}^1 \cdot R_{\rm c0}^1 +R_{\rm c0}^1 \cdot R_{\rm a0}^1 }\over{ R_{\rm a0}^1}} \\ 
-R_{ca}^1 &= {{ R_{a0}^1 \cdot R_{b0}^1 +R_{b0}^1 \cdot R_{c0}^1 +R_{c0}^1 \cdot R_{a0}^1 }\over{ R_{b0}^1}}+R_{\rm ca}^1 &= {{ R_{\rm a0}^1 \cdot R_{\rm b0}^1 +R_{\rm b0}^1 \cdot R_{\rm c0}^1 +R_{\rm c0}^1 \cdot R_{\rm a0}^1 }\over{ R_{\rm b0}^1}}
 \end{align*} \end{align*}
  
Zeile 866: Zeile 905:
 ==== Simple Example ==== ==== Simple Example ====
  
-An example of such a circuit is given in <imgref imageNo89>. Here $I_0$ is wanted. This current can be found by the (given) voltage $U_0$ and the total resistance between the terminals $a$ and $b$. So we are looking for $R_{ab}$.+An example of such a circuit is given in <imgref imageNo89>. Here $I_0$ is wanted.  
 +This current can be found by the (given) voltage $U_0$ and the total resistance between the terminals $\rm a$ and $\rm b$. So we are looking for $R_{\rm ab}$.
  
 <WRAP> <WRAP>
Zeile 874: Zeile 914:
 </WRAP> </WRAP>
  
-As already described in the previous subchapters, partial circuits can also be converted into equivalent resistors step by step. It is important to note that these partial circuits for conversion into equivalent resistors may only ever have two connections (= two nodes to the "outside world").+As already described in the previous subchapters, partial circuits can also be converted into equivalent resistors step by step.  
 +It is important to note that these partial circuits for conversion into equivalent resistors may only ever have two connections (= two nodes to the "outside world").
  
  
Zeile 884: Zeile 925:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-<imgref imageNo88 > shows the step-by-step conversion of the equivalent resistors in this example. \\ As a result of the equivalent resistance one gets:+<imgref imageNo88 > shows the step-by-step conversion of the equivalent resistors in this example. \\  
 +As a result of the equivalent resistance one gets:
  
 \begin{align*} \begin{align*}
-R_g = R_{12345} &= R_{12}||R_{345} = R_{12}||(R_3+R_{45}) =  (R_1||R_2)||(R_3+R_4||R_5) \\+R_{\rm  eq} = R_{12345} &= R_{12}||R_{345} = R_{12}||(R_3+R_{45}) =  (R_1||R_2)||(R_3+R_4||R_5) \\
 &= {{ {{R_1 \cdot R_2}\over{R_1 + R_2}} \cdot (R_3 + {{R_4 \cdot R_5}\over{R_4 + R_5}}) }\over{ {{R_1 \cdot R_2}\over{R_1 + R_2}} +R_3 + {{R_4 \cdot R_5}\over{R_4 + R_5}} }} \quad \quad \quad \quad \quad \quad \bigg\rvert \cdot{{(R_1 + R_2) \cdot (R_4 + R_5)}\over{(R_1 + R_2) \cdot (R_4 + R_5)}} \\ &= {{ {{R_1 \cdot R_2}\over{R_1 + R_2}} \cdot (R_3 + {{R_4 \cdot R_5}\over{R_4 + R_5}}) }\over{ {{R_1 \cdot R_2}\over{R_1 + R_2}} +R_3 + {{R_4 \cdot R_5}\over{R_4 + R_5}} }} \quad \quad \quad \quad \quad \quad \bigg\rvert \cdot{{(R_1 + R_2) \cdot (R_4 + R_5)}\over{(R_1 + R_2) \cdot (R_4 + R_5)}} \\
  
Zeile 923: Zeile 965:
  
 \begin{align*} \begin{align*}
-R_g = R || R + R || R || R || R + R || R || R || R + R || R = {{1}\over{2}}\cdot R + {{1}\over{4}}\cdot R + {{1}\over{4}}\cdot R + {{1}\over{2}}\cdot R = 1.5\cdot R+R_{\rm eq} = R || R + R || R || R || R + R || R || R || R + R || R = {{1}\over{2}}\cdot R + {{1}\over{4}}\cdot R + {{1}\over{4}}\cdot R + {{1}\over{2}}\cdot R = 1.5\cdot R
   \end{align*}   \end{align*}
  
Zeile 982: Zeile 1024:
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-<panel type="info" title="other Exercises"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
  
-More German exercises can be found online on the pages of [[https://www.eit.hs-karlsruhe.de/hertz/teil-b-gleichstromtechnik/zusammenschaltung-von-widerstaenden-und-idealen-quellen/uebungsaufgaben-zusammenschaltung-von-widerstaenden/berechnung-von-ersatzwiderstaenden.html|HErTZ]] (selection on the left in the menu). 
-</WRAP></WRAP></panel>