Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_1:simple_circuits [2023/09/17 00:37]
mexleadmin
electrical_engineering_1:simple_circuits [2023/10/18 01:21] (aktuell)
mexleadmin
Zeile 1: Zeile 1:
- The simulatiok====== 2Simple DC circuits ======+====== 2 Simple DC circuits ======
  
 So far, only simple circuits consisting of a source and a load connected by wires have been considered. \\  So far, only simple circuits consisting of a source and a load connected by wires have been considered. \\ 
Zeile 376: Zeile 376:
 {{youtube>VojwBoSHc8U}} {{youtube>VojwBoSHc8U}}
 </WRAP> </WRAP>
- +\\ \\ 
-The current divider rule can also be derived from Kirchhoff'current law\\ +The current divider rule shows in which way an incoming current on a node will be divided into two outgoing branches
-This states that, for resistors $R_1, ... R_ntheir currents $I_1, ... I_n$ behave just like the conductances $G_1, ... G_n$ through which they flow. \\+The rule states that the currents $I_1, ... I_non parallel resistors $R_1, ... R_n$ behave just like their conductances $G_1, ... G_n$ through which the current flows. \\
  
 $\large{{I_1}\over{I_g}} = {{G_1}\over{G_g}}$  $\large{{I_1}\over{I_g}} = {{G_1}\over{G_g}}$ 
Zeile 384: Zeile 384:
 $\large{{I_1}\over{I_2}} = {{G_1}\over{G_2}}$ $\large{{I_1}\over{I_2}} = {{G_1}\over{G_2}}$
  
-This can also be derived by Kirchhoff's current law: The voltage drop $U$ on parallel resistors $R_1, ... R_n$ is the same. When $U_1 = U_2 = ... = U$, then also $R_1 \cdot I_1 = R_2 \cdot I_2 = ... = R_{\rm eq} \cdot I_{\rm res}$. \\ +The rule also be derived from Kirchhoff's current law: \\ 
-Therefore, we get with the conductance: ${{I_1} \over {G_1}} = {{I_2} \over {G_2}}= ... = {{I_{\rm eq}} \over {G_{\rm res}}}$+  - The voltage drop $U$ on parallel resistors $R_1, ... R_n$ is the same.  
 +  - When $U_1 = U_2 = ... = U$, then the following equation is also true: $R_1 \cdot I_1 = R_2 \cdot I_2 = ... = R_{\rm eq} \cdot I_{\rm res}$. \\ 
 +  Therefore, we get with the conductance: ${{I_1} \over {G_1}} = {{I_2} \over {G_2}}= ... = {{I_{\rm eq}} \over {G_{\rm res}}}$
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~