Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:magnetic_circuits [2022/05/11 05:14]
tfischer
electrical_engineering_2:magnetic_circuits [2024/05/03 16:02] (aktuell)
mexleadmin [Magnetic Circuit with two Sources]
Zeile 1: Zeile 1:
-====== 5Magnetic Circuits ======+====== 5 Magnetic Circuits ======
  
-<callout> +<callout> For this and the following chapter the online Book 'DC Electrical Circuit Analysis - A Practical Approach' is strongly recommended as reference. In detail this is chapter [[https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electronics/DC_Electrical_Circuit_Analysis_-_A_Practical_Approach_(Fiore)/10%3A_Magnetic_Circuits_and_Transformers/10.3%3A_Magnetic_Circuits|10.3 Magnetic Circuits]] </callout>
-For this and the following chapter the online Book 'DC Electrical Circuit Analysis - A Practical Approach' is strongly reccommended as reference. In detail this is chapter [[https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electronics/DC_Electrical_Circuit_Analysis_-_A_Practical_Approach_(Fiore)/10%3A_Magnetic_Circuits_and_Transformers/10.3%3A_Magnetic_Circuits|10.3 Magnetic Circuits]]  +
-</callout>+
  
-  * {{wp>Gyrator–capacitor model}}+In the previous chapters, we got accustomed to the magnetic field. During this path, some similarities from the magnetic field to the electric circuit appeared (see <imgref ImgNr01>).
  
 +<WRAP> <imgcaption ImgNr01 | Similarities magnetic Circuit vs electric Circuit> </imgcaption> {{drawio>CompMagElCircuit.svg}} </WRAP>
  
-In the previous chapters we got accustomed tof the magnetic field. During this path some similarities from the magnetic field to the electric circuit appeared (see <imgref ImgNr01>).+In this chapter, we will investigate, how far we come with such an analogy and where it can be practically applied.
  
-<WRAP> +===== 5.1 Linear Magnetic Circuits =====
-<imgcaption ImgNr01 | Similarities magnetic Circuit vs electric Circuit> +
-</imgcaption> +
-{{drawio>CompMagElCircuit.svg}} +
-</WRAP>+
  
-In this chapter we will investigatehow far we come with such an analogy and where it can by practically applied. +For the upcoming calculationsthe following assumptions are made
  
 +  - The relationship between $B$ and $H$ is linear: $B = \mu \cdot H$ \\ This is a good estimation when the magnetic field strength lays well below saturation
 +  - There is no stray field leaking out of the magnetic field conducting material.
 +  - The fields inside of airgaps are homogeneous. This is true for small air gaps.
  
-===== 5.1 Linear magnetic Circuits =====+One can calculate a lot of simple magnetic circuits when these assumptions and focusing on the average field line are applied.
  
-For the upcoming calculations the following assumptions are made +<WRAP> <imgcaption ImgNr03 | Simplifications and Linearization> </imgcaption> {{drawio>SimplificationLin.svg}} </WRAP>
-  - The relationship between $B$ and $H$ is linear: $B = \mu \cdot H$ \\ This is a good estimation when the magnetic field strength lays well below saturation  +
-  - There is not stray field leaking out of the magnetic-field conducting material. +
-  - The fields inside of airgaps is homogenious. This is true for small airgaps.+
  
-One can calulate a lot of simple magnetic circuits, when this assumptions and focusing on the average field line are applied.+Two simple magnetic circuits are shown in <imgref ImgNr02>: They consist of
  
-<WRAP> +  * a current-carrying coil
-<imgcaption ImgNr03 | Simplifications and Linearization> +
-</imgcaption> +
-{{drawio>SimplificationLin.svg}} +
-</WRAP> +
- +
-Two simple magnetic circuits are shown in <imgref ImgNr02>: They consist of  +
-  * a current-carrying coil +
   * a ferrite core   * a ferrite core
   * an airgap (in picture (2) ).   * an airgap (in picture (2) ).
  
-<WRAP> +<WRAP> <imgcaption ImgNr02 | A simple magnetic Circuit> </imgcaption> {{drawio>SimpleMagnCircuit.svg}} </WRAP>
-<imgcaption ImgNr02 | A simple magnetic Circuit> +
-</imgcaption> +
-{{drawio>SimpleMagnCircuit.svg}} +
-</WRAP>+
  
-This three parts will be investigated shortly:+These three parts will be investigated shortly:
  
-==== Current-carrying Coil  ====+==== Current-carrying Coil ====
  
 For the magnetic circuit, the coil is parameterized only by: For the magnetic circuit, the coil is parameterized only by:
-  * its nuber of windings $N$ and+ 
 +  * its number of windings $N$ and
   * the passing current $i$.   * the passing current $i$.
-This parameters lead to the magnetic voltage $\theta = N\cdot i$.  
  
-==== Ferrite Core ==== +These parameters lead to the magnetic voltage $\theta = N\cdot i$. 
 + 
 +==== Ferrite Core ====
  
-  * The core is assumed to be made of ferromagnetic material.  +  * The core is assumed to be made of ferromagnetic material. 
-  * Therefore, the relative permeability in the core is much larger than in air ($\mu_{r,core}\gg 1$). +  * Therefore, the relative permeability in the core is much larger than in air ($\mu_{\rm r,core}\gg 1$).
   * The ferrite core is also filling the inside of the current-carrying coil.   * The ferrite core is also filling the inside of the current-carrying coil.
   * The ferrite core conducts the magnetic flux around the magnetic circuit (and by this: also to the airgap)   * The ferrite core conducts the magnetic flux around the magnetic circuit (and by this: also to the airgap)
  
-==== Airgap ====  +==== Airgap ====
-  * The airgap interrupts the ferrite core. +
-  * The width of the airgap is small compared to the dimensions of the cross section of the ferrite core. +
-  * The field in the airgap can be used to generate (mechanical) effects within the airgap. \\ An example for this can be the force onto a permanent magnet (see <imgref ImgNr02> (3)).+
  
-With the above-mentioned assumtions the magnetic flux $\Phi$ must remain constant along the ferrite core, so $\Phi_{core}=const.$. \\ +  * The air gap interrupts the ferrite core. 
-Since the magnetic field lines to neither show sources nor sinks, also the flux passing over to the airgap must be $\Phi_{airgap}=\Phi_{core}=const.$ +  * The width of the air gap is small compared to the dimensions of the cross-section of the ferrite core. 
-This can also be seen in <imgref ImgNr04> (1) ). \\ +  * The field in the air gap can be used to generate (mechanicaleffects within the air gap. \\ An example of this can be the force onto a permanent magnet (see <imgref ImgNr02> (3)).
-A different view onto this is the closed surface $\vec{A}$ (<imgref ImgNr04> (2)): Based on the examination in [[The time-dependent Magnetic Field#Recap of magnetic Field]] we know that the flux into the volume must be equal the flux out of the volume, or $\Phi_m = \iint_{A} \vec{B} \cdot d \vec{A} = 0$+
  
-The relationship $B=\mu \cdot H$, and $\mu_{core}\gg\mu_{airgap}$ lead to the fact that the ${H}$-Field must be much stronger within the airgap (<imgref ImgNr04> (3)).+With the above-mentioned assumptions the magnetic flux $\Phimust remain constant along the ferrite coreso $\Phi_{\rm core}=\rm const.$. \\  
 +Since the magnetic field lines neither show sources nor sinks, also the flux passing over to the airgap must be $\Phi_{\rm airgap}=\Phi_{\rm core}=\rm const.This can also be seen in <imgref ImgNr04> (1) ). \\  
 +A different view of this is the closed surface $\vec{A}$ (<imgref ImgNr04> (2)): Based on the examination in [[:electrical_engineering_2:the_time-dependent_magnetic_field#recap_of_magnetic_field|Recap of magnetic Field]] we know that the flux into the volume must be equal the flux out of the volume, or $\Phi_{\rm m} = \iint_{A} \vec{B} \cdot d \vec{A} = 0$.
  
-<WRAP> +The relationship $B=\mu \cdot H$, and $\mu_{\rm core}\gg\mu_{\rm airgap}$ lead to the fact that the ${H}$-Field must be much stronger within the airgap (<imgref ImgNr04(3)).
-<imgcaption ImgNr04 | Band H-field along the ferrite core> +
-</imgcaption> +
-{{drawio>BHfieldFerriteCore.svg}} +
-</WRAP>+
  
-==== Magnetic Circuit in a Formula ==== +<WRAP> <imgcaption ImgNr04 | B- and H-field along the ferrite core> </imgcaption> {{drawio>BHfieldFerriteCore.svg}} </WRAP>
  
-Therefore, the following formula is given +==== Magnetic Circuit in a Formula ==== 
-\begin{align*} + 
-\Phi_m &= &\iint_A &\vec{B} \cdot d \vec{A} &= &const. \\ +Therefore, the following formula is given  
-       &= &        &B \cdot A &= &const. \\ +\begin{align*}  
-       &= &        &B_{core} \cdot A_{core} &= &B_{airgap} \cdot A_{airgap} = const. \\+\Phi_{\rm m} &= &\iint_A                           &\vec{B} \cdot d \vec{A} &= &{\rm const.\\  
 +             &= &                                       \cdot         &= &{\rm const.\\  
 +             &= & &B_{\rm core} \cdot A_{\rm core} &                      & B_{\rm airgap} \cdot A_{\rm airgap} = {\rm const.\\ 
 \end{align*} \end{align*}
  
-The assumptions, that there is that the field inside of airgap is homogenious and there is no strayfield lead to the fact, that $A_{core} = A_{airgap}$. \\ +The assumption, that there is that the field inside of airgap is homogeneous and there is no stray field lead to the fact, that $A_{\rm core} = A_{\rm airgap}$. \\ 
 Therefore:  Therefore: 
-\begin{align*} +\begin{align*}  
-B_{core} &= &B_{airgap} = B \\ +B_{\rm core}                        &= &B_{\rm airgap} = B \\  
-\mu_0 \mu_{r,core} H_{core} &= &\mu_0 \mu_{r,airgap} H_{airgap} = {{\Phi}\over{A}} \tag{5.2.1}+\mu_0 \mu_{\rm r,core} H_{\rm core} &= &\mu_0 \mu_{\rm r,airgap} H_{\rm airgap} = {{\Phi}\over{A}} \tag{5.2.1} 
 \end{align*} \end{align*}
  
-Beside this, the magnetic field strength $H$ along one field line is directly given by: +Besides this, the magnetic field strength $H$ along one field line is directly given by:  
-\begin{align*} +\begin{align*}  
-\theta = N \cdot i &= \int_s \vec{H} d\vec{s} = \\ +\theta = N \cdot i &= \int_s \vec{H} d\vec{s} = \\  
-                   &= \int_{core} \vec{H} d\vec{s} + \int_{airgap} \vec{H} d\vec{s} \\ +                   &= \int_{\rm core} \vec{H} d\vec{s} + \int_{\rm airgap} \vec{H} d\vec{s} \\ 
- \end{align*} +
- +
-With the assumtion of a linear and homogeneous $B$-Field and the width $\delta$ of the airgap, this leads to: +
-\begin{align*} +
-\theta = {H}_{core} l_{core} + {H}_{airgap} \delta \tag{5.2.2}+
 \end{align*} \end{align*}
  
-With the prevoius formula $5.2.1$, this gets to: +With the assumtion of a linear and homogeneous $B$-Field and the width $\delta$ of the airgap, this leads to:  
-\begin{align*} +\begin{align*} \theta = {H}_{\rm core} l_{\rm core} + {H}_{\rm airgap} \delta \tag{5.2.2} \end{align*} 
-\theta &= {{B}\over{\mu_0 \mu_{r,core}}} l_{core} + {{B}\over{\mu_0 \mu_{r,airgap}}} \delta \\ + 
-       &= {{\Phi \cdot l_{core}}\over{A  \cdot \mu_0 \mu_{r,core}}}  + {{\Phi \cdot \delta}\over{A  \cdot \mu_0 \mu_{r,airgap}}} \\ +With the prevoius formula $5.2.1$, this gets to:  
-      &= {{1}\over{\mu_0 \mu_{r,core}}}{{l_{core}}\over{A}} \cdot \Phi  + {{1}\over{\mu_0 \mu_{r,airgap}}}{{\delta}\over{A}} \cdot \Phi    \tag{5.2.3}+\begin{align*}  
 +\theta &= {{B}\over{\mu_0 \mu_{\rm r,core}}} l_{\rm core}                       + {{B}\over{\mu_0 \mu_{\rm r,airgap}}} \delta \\  
 +       &= {{\Phi \cdot l_{\rm core}}\over{A \cdot \mu_0 \mu_{\rm r,core}}}      + {{\Phi \cdot \delta}\over{A \cdot \mu_0 \mu_{\rm r,airgap}}} \\  
 +       &= {{1}\over{\mu_0 \mu_{\rm r,core}}}{{l_{\rm core}}\over{A}} \cdot \Phi + {{1}\over{\mu_0 \mu_{\rm r,airgap}}}{{\delta}\over{A}}   \cdot \Phi \tag{5.2.3} 
 \end{align*} \end{align*}
  
-Comparing the formula $5.2.3$ with the ohmic resistance and resistivity of two resistors in seriesshows something interesting: +Comparing the formula $5.2.3$ with the ohmic resistance and resistivity of two resistors in series shows something interesting:  
-\begin{align*} +\begin{align*}  
-u &= &R_1                    \cdot &i &+ &R_2                    \cdot i  \\+u &= &R_1 \cdot                    &i &+ &R_2 \cdot i \\ 
   &= &\rho {{l_1}\over{A_1}} \cdot &i &+ &\rho {{l_2}\over{A_2}} \cdot i    &= &\rho {{l_1}\over{A_1}} \cdot &i &+ &\rho {{l_2}\over{A_2}} \cdot i 
 \end{align*} \end{align*}
  
 This leads to: This leads to:
 +
   * The magnetic voltage $\theta$ acts like the electic voltage $u$, \\ the magnetic flux $\Phi$ like the current $i$.   * The magnetic voltage $\theta$ acts like the electic voltage $u$, \\ the magnetic flux $\Phi$ like the current $i$.
-  * The linear relationship $\theta = f(\Phi)$ is also called {{wp>Magnetic_circuit#Hopkinson's_law|Hopkinson's Law}}.+  * The linear relationship $\theta = f(\Phi)$ is also called {{https://en.wikipedia.org/wiki/Magnetic_circuit#Hopkinson's_law|Hopkinson's Law}}.
  
 <callout icon="fa fa-exclamation" color="red" title="Notice:"> <callout icon="fa fa-exclamation" color="red" title="Notice:">
-  * Also for the magnetic circuit one can set up a lumped circuit model (see <imgref ImgNr07>).  
-  * Similar to Ohms law, there is a **magnetic resistance** or **reluctance**: \\ \begin{align*} \boxed{R_m = {{1}\over{\mu_0 \mu_{r}}}{{l}\over{A}}} \end{align*} 
-  * The unit of $R_m$ is $[R_m]= [\theta]/[\Phi] = 1 A / Vs = 1/H $ 
-  * The length $l$ is given by the average field line length in the core. 
-  * The Kirchhoff's laws (mesh rule and nodal rule) can also be applied:  
-    * The sum of the magentic fluxes $\Phi_i$ in into a node is: $\sum_i \Phi_i=0 $ 
-    * The sum of the magnetic voltages $\theta_i$ along the average field line is: $\sum_i \theta_i=0 $ 
-  * The application of the lumped circuit model is based on multiple assumptions. \\ In contrast to the simplification for the electric current and voltage the simplification for the flux and magnetic voltage in not as exact.  
  
-<WRAP+  * Also for the magnetic circuit one can set up a lumped circuit model (see <imgref ImgNr07>). 
-<imgcaption ImgNr07 | lumped Circuit Model for magnetic Circuits> +  * Similar to Ohms law, there is a **magnetic resistance**  or **reluctance**: \\ \begin{align*} \boxed{R_{\rm m} = {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}}} \end{align*} 
-</imgcaption> +  * The unit of $R_{\rm m}$ is $[R_{\rm m}]= [\theta]/[\Phi] = ~\rm 1 A / Vs = 1/H $ 
-{{drawio>LumpedMagnCircuit.svg}} +  * The length $l$ is given by the mean magnetic path length (= average field line length in the core). 
-</WRAP>+  * Kirchhoff's laws (mesh rule and nodal rule) can also be applied: 
 +      * The sum of the magentic fluxes $\Phi_i$ in into a node is: $\sum_i \Phi_i=0 $ 
 +      * The sum of the magnetic voltages $\theta_i$ along the average field line is: $\sum_i \theta_i=0 $ 
 +  * The application of the lumped circuit model is based on multiple assumptions. \\ In contrast to the simplification for the electric current and voltage the simplification for the flux and magnetic voltage is not as exact. 
 + 
 +<WRAP> <imgcaption ImgNr07 | lumped Circuit Model for magnetic Circuits> </imgcaption> {{drawio>LumpedMagnCircuit.svg}} </WRAP>
  
 </callout> </callout>
  
-==== Application and Limitations of the Circuit Interpretation ==== +==== Application and Limitations of the Circuit Interpretation ====
  
 +<callout icon="fa fa-exclamation" color="red" title="Notice:"> "Recipe" for solving magnetic circuits:
  
-<callout icon="fa fa-exclamation" color="red" title="Notice:"> +  - Watch out for individual magnetic resistances in the circuits: 
-"Recipe" for solving magnetic circuits: +      - Separate the magnetic circuit into parts, where the permeability and area of the cross-section are constant. \\ For these parts $B$ and $H$ is constant. These parts will have individual magnetic resistances. 
-  - Watch out for indicidual magnetic resistances in the circuits: +      - Each airgap also gets an individual magnetic resistance. 
-    - Separate the magnetic circuit into parts, where the the permeability and area of the cross section is constant. \\ For these parts $B$ and $H$ is constant. These parts will have individual magnetic resistances. +      - Calculate the magnetic resistance by the mean magnetic path length through the individual parts. 
-    - Each airgap also gest an individual magnetic resistance. +  - Calculate the magnetic circuit as circuit. 
-    - Calculate the magnetic resistance by the average length of field line through the individual parts. +      - Magnetic voltages depict voltage sources; magnetic flux depicts currents. 
-  - Calculate the magnetic circuit as circuit. +      - Use the known way to solve the circuit.
-    - Magnetic voltages depicts voltage sources ; magnetic flux depicts currents. +
-    - Use the known way to solve the circuit.+
  
-Be aware that the orientation of the current $I$ and the field strength $\vec{H}$ are also connected by the right hant rule. +Be aware that the orientation of the current $I$ and the field strength $\vec{H}$ are also connected by the right-hand rule. </callout>
-</callout>+
  
-The results are only allowed as first approximation. The following table shows the contrast between the electric and magnetic field:+The results are only allowed as first approximation. The following table shows the contrast between the electric and magnetic fields:
  
-^Property  ^Electric Field^Magnetic Field^ +^Property        ^Electric Field                                                               ^Magnetic Field | 
-|Materials | There are "pure" isolator, which are completely non conductive. | All materials have a permeability $>0$  +|Materials       |There are "pure" isolators, which are completely non-conductive.             |All materials have a permeability $>0$ | 
-|Sources   | The source is concentrated \\ (= there are field sources / electric charges) | The magnetic source (= coil) is distributed   +|Sources         |The source is concentrated \\ (= there are field sources / electric charges) |The magnetic source (= coil) is distributed | 
-|Simplifications| The simplifications often work for good results \\ (small wire diameter, relativly constant resistivity)  | The simplification are often too simple \\ (wide spread beyond the average field length, non-linearity of the permeability) |+|Simplifications |The simplifications often work for good results \\ (small wire diameter, relatively constant resistivity) |The simplification is often too simple \\ (widespread beyond the mean magnetic path length, non-linearity of the permeability) |
  
 <panel type="info" title="Task 5.1.1 Coil on a plastic Core"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Task 5.1.1 Coil on a plastic Core"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-A coil is set-up onto a toroidal plastic ring ($\mu_r=1$) with an average circumference of $l_R = 300mm$.  +A coil is set up onto a toroidal plastic ring ($\mu_{\rm r}=1$) with an average circumference of $l_R = 300 ~\rm mm$.  
-The $N=400$ windings are evenly distributed along the circumference. +The $N=400$ windings are evenly distributed along the circumference.  
-The diameter on the cross section of the plastic ring is $d = 10mm$.  +The diameter on the cross-section of the plastic ring is $d = 10 ~\rm mm$. In the windingsa current of $I=500 ~\rm mA$ is flowing.
-In the windings a current of $I=500mA$ is flowing.+
  
-Calculate  +Calculate 
-  - the magnetic field strength $H$ in the middle of the ring cross section. + 
-  - the magnetic flux density $B$ in the middle of the ring cross section. +  - the magnetic field strength $H$ in the middle of the ring cross-section. 
-  - the magnetic resistance $R_m$ of the plastic ring.+  - the magnetic flux density $B$ in the middle of the ring cross-section. 
 +  - the magnetic resistance $R_{\rm m}$ of the plastic ring.
   - the magnetic flux $\Phi$.   - the magnetic flux $\Phi$.
 +
 +<button size="xs" type="link" collapse="Solution_5_1_1_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_1_1_Result" collapsed="true">
 +
 +  - $H = 667 ~\rm {{A}\over{m}}$
 +  - $B = 0.84 ~\rm mT$
 +  - $R_m = 3 \cdot 10^9 ~\rm {{1}\over{H}}$
 +  - $\Phi = 66 ~\rm nVs$
 +
 +</collapse>
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
 +<panel type="info" title="Task 5.1.2 magnetic Resistance of a cylindrical coil"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-<panel type="info" title="Task 5.1.2 Coil on a ferrite Core with airgap"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+Calculate the magnetic resistances of cylindrical coreless (=ironless) coils with the following dimensions:
  
-The choke coil shown in <imgref ImgNr08> shall be given, with a constant cross section in all legs $l_0$, $l_1$, $l_2$. +  - $l=35.8~\rm cm$, $d=1.90~\rm cm$ 
-The number of windings shall be $Nand the current through a single winding $I$.+  - $l=11.1~\rm cm$$d=1.50~\rm cm$
  
 +#@HiddenBegin_HTML~5_1_2s,Solution~@#
  
-<WRAP> +The magnetic resistance is given by: 
-<imgcaption ImgNr08 | Example for Choke Coil+\begin{align*} 
-</imgcaption+\ R_{\rm m} &= {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}}  
-{{drawio>ChokeCoilEx1.svg}} +\end{align*} 
-</WRAP>+ 
 +With 
 +  * the area $ A = \left({{d}\over{2}}\right)^2 \cdot \pi $ 
 +  * the vacuum magnetic permeability $\mu_{0}=4\pi\cdot 10^{-7} ~\rm H/m$, and  
 +  * the relative permeability $\mu_{\rm r}=1$. 
 + 
 +#@HiddenEnd_HTML~5_1_2s,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~5_1_2r,Result~@# 
 +  - $1.00\cdot 10^9 ~\rm {{1}\over{H}}$ 
 +  - $0.50\cdot 10^9 ~\rm {{1}\over{H}}$ 
 +#@HiddenEnd_HTML~5_1_2r,Result~@# 
 + 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Task 5.1.3 magnetic Resistance of an airgap"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 + 
 +Calculate the magnetic resistances of an airgap with the following dimensions: 
 + 
 +  - $\delta=0.5~\rm mm$, $A=10.2~\rm cm^2$ 
 +  - $\delta=3.0~\rm mm$, $A=11.9~\rm cm^2$ 
 + 
 +<button size="xs" type="link" collapse="Solution_5_1_3_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_3_1_Result" collapsed="true"> 
 + 
 +  - $3.9\cdot 10^5 ~\rm {{1}\over{H}}$ 
 +  - $2.0\cdot 10^6 ~\rm {{1}\over{H}}$ 
 + 
 +</collapse> 
 + 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Task 5.1.4 Magnetic Voltage"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 + 
 +Calculate the magnetic voltage necessary to create flux of $\Phi=0.5 ~\rm mVs$ in an airgap with the following dimensions: 
 + 
 +  - $\delta=1.7~\rm mm$, $A=4.5~\rm cm^2$ 
 +  - $\delta=5.0~\rm mm$, $A=7.1~\rm cm^2$ 
 + 
 +<button size="xs" type="link" collapse="Solution_5_1_4_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_4_1_Result" collapsed="true"> 
 + 
 +  - $\theta = 1.5\cdot 10^3 ~\rm A$, or $1000$ windings with $1.5~\rm A$ 
 +  - $\theta = 2.8\cdot 10^3 ~\rm A$, or $1000$ windings with $2.8~\rm A$ 
 + 
 +</collapse
 + 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Task 5.1.5 Magnetic Flux"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 + 
 +Calculate the magnetic flux created on a magnetic resistance of $R_m = 2.5 \cdot 10^6 ~\rm {{1}\over{H}}$ with the following magnetic voltages: 
 + 
 +  - $\theta = 35   ~\rm A$ 
 +  - $\theta = 950  ~\rm A$ 
 +  - $\theta = 2750 ~\rm A$ 
 + 
 +<button size="xs" type="link" collapse="Solution_5_1_5_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_5_1_Result" collapsed="true"> 
 + 
 +  - $\Phi =14  ~\rm µVs$ 
 +  - $\Phi =0.38~\rm mVs$ 
 +  - $\Phi =1.1 ~\rm mVs$ 
 + 
 +</collapse> 
 + 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Task 5.1.6 Two-parted ferrite Core"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 + 
 +A core shall consist of two parts as seen in <imgref ImgExNr08>.  
 +In the coil, with $600$ windings shall pass the current $I=1.30 ~\rm A$. 
 + 
 +The cross sections are $A_1=530 ~\rm mm^2$ and $A_2=460 ~\rm mm^2$.  
 +The mean magnetic path lengths are $l_1 = 200 ~\rm mm$ and $l_2 = 130 ~\rm mm$. 
 + 
 +The air gaps on the coupling joint between both parts have the length $\delta=0.23 ~\rm mm$ each.  
 +The permeability of the ferrite is $\mu_r = 3000$.  
 +The cross-section area $A_{\delta}$ of the airgap can be considered the same as $A_2$ 
 + 
 +<WRAP> <imgcaption ImgExNr08 | Two-parted ferrite Core> </imgcaption> {{drawio>TwoPartedCoil.svg}} </WRAP>
  
   - Draw the lumped circuit of the magnetic system   - Draw the lumped circuit of the magnetic system
-  - Calculate all magnetic resistances $R_{m,i}$ +  - Calculate all magnetic resistances $R_{\rm m,i}$ 
-  - Calculate the partial fluxes in al the legs of the circuit +  - Calculate the flux in the circuit
  
 +<button size="xs" type="link" collapse="Solution_5_1_6_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_6_1_Result" collapsed="true">
 +
 +  - -
 +  - magnetic resistances: $R_{\rm m,1} = 100 \cdot 10^3 ~\rm {{1}\over{H}}$, $R_{\rm m,1} = 75 \cdot 10^3 ~\rm {{1}\over{H}}$, $R_{{\rm m},\delta} = 400 \cdot 10^3 ~\rm {{1}\over{H}}$
 +  - magnetic flux: $\Phi = 0.80 ~\rm mVs$
 +
 +</collapse>
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
 +
 +<panel type="info" title="Task 5.1.7 Comparison with simplified Calculation"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +The magnetic circuit in <imgref ImgExNr09> passes a magnetic flux density of $0.4 ~\rm T$ given by an excitation current of $0.50 ~\rm A$ in $400$ windings. 
 +At position $\rm A-B$, an air gap will be inserted. After this, the same flux density will be reached with $3.70 ~\rm A$
 +
 +<WRAP> <imgcaption ImgExNr09 | Example of a magnetic circuit> </imgcaption> {{drawio>ExMagncirc01.svg}} </WRAP>
 +
 +  - Calculate the length of the airgap $\delta$ with the simplification $\mu_{\rm r} \gg 1$
 +  - Calculate the length of the airgap $\delta$ exactly with $\mu_{\rm r} = 1000$
 +
 +<button size="xs" type="link" collapse="Solution_5_1_7_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_7_1_Result" collapsed="true">
 +
 +  - $\delta = 4.02(12) ~\rm mm$
 +  - $\delta = 4.02(52) ~\rm mm$
 +
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Task 5.1.8 Coil on a ferrite Core with airgap"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +The choke coil shown in <imgref ImgExNr10> shall be given, with a constant cross-section in all legs $l_0$, $l_1$, $l_2$. 
 +The number of windings shall be $N$ and the current through a single winding $I$.
 +
 +<WRAP> <imgcaption ImgExNr10 | Example for a Choke Coil> </imgcaption> {{drawio>ChokeCoilEx1.svg}} </WRAP>
 +
 +  - Draw the lumped circuit of the magnetic system
 +  - Calculate all magnetic resistances $R_{{\rm m},i}$
 +  - Calculate the partial fluxes in all the legs of the circuit
 +
 +</WRAP></WRAP></panel>
 +
 ===== 5.2 Non-linear magnetic Circuits ===== ===== 5.2 Non-linear magnetic Circuits =====
  
Zeile 204: Zeile 308:
 ===== 5.3 Mutual Induction and Coupling ===== ===== 5.3 Mutual Induction and Coupling =====
  
-Situation: Two coils $1$ and $2$ near by each other. \\ +Situation: Two coils $1$ and $2$ near each other. \\ Questions:
-Questions: +
-  * Which effect do the coils have onto each other? +
-  * Can we describe the effects with mainly electric properties (i.e. no gemoetric properties)+
  
-<WRAP center 35%> +  * Which effect do the coils have on each other? 
-<imgcaption ImgNr09 |  Mutual Induction of two Coils> +  * Can we describe the effects with mainly electric properties (i.e. no geometric properties) 
-</imgcaption> + 
-{{drawio>MutualInductionTwoCoils1.svg}} +<WRAP center 35%> <imgcaption ImgNr09 | Mutual Induction of two Coils> </imgcaption> {{drawio>MutualInductionTwoCoils1.svg}} </WRAP> 
-</WRAP>+ 
 +==== Effect of Coils on each other ====
  
-==== Effect of Coils onto each other ==== 
   - Windings $N_1$ of coil $1$ gets feed with current $i_1$.   - Windings $N_1$ of coil $1$ gets feed with current $i_1$.
   - Coil $1$ generates change in flux $\Phi_{11}$   - Coil $1$ generates change in flux $\Phi_{11}$
   - Coil $2$ gets passed by part of the flux ($\Phi_{21}$)   - Coil $2$ gets passed by part of the flux ($\Phi_{21}$)
-  - Stray flux $\Phi_{S1}$ takes not part in coupling +  - Stray flux $\Phi_{\rm S1}$ takes not part in coupling 
-  * $\rightarrow$ Coils are magnetically coupled: \\ Flux $\Phi_{11}$ of coil $1$ gets divided into flux $\Phi_{21}$ in coil $2$ and stray flux $\Phi_{S1}$ not passing coil $2$: \\ \\ $\Phi_{11} = \Phi_{21}  + \Phi_{S1}$ \\ \\ + 
-  * Induced voltage in coil $2$: \\ \\ $ u_{ind,2} = -{{d}\over{dt}}\Psi_{21} $ \\ $\quad\quad = -N_2 \cdot {{d}\over{dt}}\Phi_{21} $ \\ \\ +  * $\rightarrow$ Coils are magnetically coupled: \\ Flux $\Phi_{11}$ of coil $1$ gets divided into flux $\Phi_{21}$ in coil $2$ and stray flux $\Phi_{\rm S1}$ not passing coil $2$: \\  \\ $\Phi_{11} = \Phi_{21} + \Phi_{\rm S1}$ \\ 
-  * Similar effect on coil $1$ due to a current $i_2$ through coil $2$: \\ \\ $\Phi_{22} = \Phi_{12}  + \Phi_{S2}$ \\ \\  $ u_{ind,1} = -N_1 \cdot {{d}\over{dt}}\Phi_{12} $+  * Induced voltage in coil $2$: \\  \\ $ u_{\rm ind,2} = -{{\rm d}\over{{\rm d}t}}\Psi_{21} $ \\ $\quad\quad = -N_2 \cdot {{\rm d}\over{{\rm d}t}}\Phi_{21} $ \\ 
 +  * Similar effect on coil $1$ due to a current $i_2$ through coil $2$: \\  \\ $\Phi_{22} = \Phi_{12} + \Phi_{\rm S2}$ \\  \\ $ u_{\rm ind,1} = -N_1 \cdot {{\rm d}\over{{\rm d}t}}\Phi_{12} $
  
 ==== Linked Fluxes ==== ==== Linked Fluxes ====
-For the single coil we got the relationship between the linked flux $\Psi$ and the current $i$ as: $\Psi = L \cdot i$. \\ + 
-Now the coils also are interacting with each other. This must also be reflected in the relationship  $\Psi_1 = f(i_1, i_2)$, $\Psi_2 = f(i_1, i_2)$: +For the single coilwe got the relationship between the linked flux $\Psi$ and the current $i$ as: $\Psi = L \cdot i$. \\  
-\begin{align*} +Now the coils also are interacting with each other. This must also be reflected in the relationship $\Psi_1 = f(i_1, i_2)$, $\Psi_2 = f(i_1, i_2)$:  
-\Psi_1 &= &\Psi_{11} &+ \Psi_{12} \\ +\begin{align*}  
-\Psi_2 &= &\Psi_{22} &+ \Psi_{21} \\ +\Psi_1 &= &\Psi_{11}        &+ \Psi_{12} \\  
-\\ +\Psi_2 &= &\Psi_{22}        &+ \Psi_{21} \\ \\  
-\Psi_1 &= &L_{11} \cdot i_1 &+ M_{12} \cdot i_2 \\ + 
-\Psi_2 &= &L_{22} \cdot i_2 &+ M_{21} \cdot i_1 \\+\Psi_1 &= &L_{11} \cdot i_1 &+ M_{12} \cdot i_2 \\  
 +\Psi_2 &= &L_{22} \cdot i_2 &+ M_{21} \cdot i_1 \\ 
 \end{align*} \end{align*}
  
 With With
-  * $L_{11}$ and $L_{22}$ as the self induction + 
 +  * $L_{11}$ and $L_{22}$ as the self induction
   * $M_{12}$ and $M_{21}$ as the **mutual induction**   * $M_{12}$ and $M_{21}$ as the **mutual induction**
  
-The formula can also be described as: +The formula can also be described as:  
-\begin{align*} +\begin{align*}  
-\left( +\left( \begin{array}{c} \Psi_1 \\          \Psi_2 \end{array}           \right) =  
-\begin{array}{c} +\left( \begin{array}{c} L_{11} & M_{12} \\  M_{21} & L_{22} \end{array} \right)  
-\Psi_1 \\ +\cdot  
-\Psi_2  +\left( \begin{array}{c} i_1 \\              i_2 \end{array}             \right) 
-\end{array} +
-\right) =  +
-\left( +
-\begin{array}{c} +
-L_{11} & M_{12} \\ +
-M_{21} & L_{22}  +
-\end{array} +
-\right)  +
-\cdot +
-\left( +
-\begin{array}{c} +
-i_1 \\ +
-i_2  +
-\end{array} +
-\right) +
 \end{align*} \end{align*}
  
-The view onto the magnetic flux is sometimes goodwhen effects like an acting Lorentz force in at interest. More often the coils are coupling two electric circuits linke in a transformer or a wireless charger. Here, the effect into the circuits is of interest. This can be calculated with the induced electric voltages $u_{ind,1}$ and $u_{ind,2}$ in each circuits. They are given by the formula $u_{ind,x} = -d\Psi_x /dt$:+The view of the magnetic flux is sometimes good when effects like an acting Lorentz force in of interest.  
 +More often the coils are coupling two electric circuits linked in a transformer or a wireless charger.  
 +Here, the effect on the circuits is of interest. This can be calculated with the induced electric voltages $u_{\rm ind,1}$ and $u_{\rm ind,2}$ in each circuit 
 +They are given by the formula $u_{{\rm ind},x} = -{\rm d}\Psi_x /{\rm d}t$:
  
-\begin{align*} +\begin{align*}  
-\left( +\left( \begin{array}{c} u_1 \\ u_2 \end{array} \right) &= -{{\rm d}\over{{\rm d}t}} \left( \begin{array}{c} \Psi_1 \\ \Psi_2 \end{array} \right) \\  
-\begin{array}{c} +                                                       &= -\left( \begin{array}{c} L_{11} & M_{12} \\ M_{21} & L_{22} \end{array} \right) \cdot  
-u_1 \\ +                                                           \left( \begin{array}{c} {{\rm d}\over{{\rm d}t}} i_1 \\  
-u_2  +{{\rm d}\over{{\rm d}t}}i_2 \end{array} \right) 
-\end{array} +
-\right) & +
--{{d}\over{dt}} \left( +
-\begin{array}{c} +
-\Psi_1 \\ +
-\Psi_2  +
-\end{array} +
-\right) \\ +
-&= +
--\left( +
-\begin{array}{c} +
-L_{11} & M_{12} \\ +
-M_{21} & L_{22}  +
-\end{array} +
-\right)  +
-\cdot +
-\left( +
-\begin{array}{c} +
-{{d}\over{dt}}i_1 \\ +
-{{d}\over{dt}}i_2  +
-\end{array} +
-\right) +
 \end{align*} \end{align*}
- 
  
 The main question is now: How do we get $L_{11}$, $M_{12}$, $L_{22}$, $M_{21}$? The main question is now: How do we get $L_{11}$, $M_{12}$, $L_{22}$, $M_{21}$?
  
-==== Magnetic Circuit with Sources ====+==== Magnetic Circuit with two Sources ====
  
-In order to get the self induction and mutual induction of two interacting coils, we are going to investigate two coils on an iron core with a middle leg (see <imgref ImgNr08>). \\ +To get the self-induction and mutual induction of two interacting coils, we are going to investigate two coils on an iron core with a middle leg (see <imgref ImgNr08>). \\  
-Ther the stray flux of the previous situation is only located in the middle leg.  +There the stray flux of the previous situation is only located in the middle leg. This also means, that there is no stray flux outside of the iron core.
-This also means, that there is no stray flux outside of the iron core.+
  
-<WRAP> +<WRAP> <imgcaption ImgNr08 | Example for Iron Core with two Coils> </imgcaption> {{drawio>CoreWithTwoCoils.svg}} </WRAP>
-<imgcaption ImgNr08 | Example for Iron Core with two Coils> +
-</imgcaption> +
-{{drawio>CoreWithTwoCoils.svg}} +
-</WRAP>+
  
-The <imgref ImgNr08> shows the fluxes on each parts. The filled black circles nearby the windings mark the direction of winding: \\ +The <imgref ImgNr08> shows the fluxes on each part. The black dots nearby the windings mark the direction of the windings, and therefore the sign of the generated flux. \\  
-When there is one current for each winding ingoing into the marked pin, the fluxes will get added up positively+All the fluxes caused by currents flowing into the __marked pins__ are summed up __positively__ in the core. \\ 
 +When there is current flowing into a __non-marked pin__its flux has to be __subtracted__ from the others.
  
-In order to get $L_{11}$ and $L_{22}$, we look back to the inductivity $L$ of a long coil with the length $l$. \\ +To get $L_{11}$ and $L_{22}$, we look back to the inductance $L$ of a long coil with the length $l$. \\  
-This was given in the chapter [[the_time-dependent_magnetic_field#self-induction1|Self-Induction]] as+This was given in the chapter [[:electrical_engineering_2:the_time-dependent_magnetic_field#self-induction1|Self-Induction]] as
  
-\begin{align*} +\begin{align*}  
-L &= {{\Psi}\over{i}}  \\ +L &= {{\Psi}\over{i}} \\  
-L &= \mu_0 \mu_r  \cdot N^2 \cdot {{A }\over {l}}  \\+L &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A} \over {l}} \\ 
 \end{align*} \end{align*}
  
-In this case, $\Psi$ was the flux through the coil generated from the coil itself - here $L_{11}$ and $L_{22}$. \\ +In this case, $\Psi$ was the flux through the coil generated from the coil itself - here $L_{11}$ and $L_{22}$. \\  
-Comparing this formula with the magnetic resistance $R_m = {{1}\over{\mu_0 \mu_{r}}}{{l}\over{A}}$ of the coil, one can conclude:+Comparing this formula with the magnetic resistance $R_{\rm m} = {{1}\over{\mu_0 \mu_{\rm r}}} {{l}\over{A}}$ of the coil, one can conclude:
  
-\begin{align} +\begin{align} L = {{N^2 }\over {R_{\rm m,coil}}} \end{align}
-L =  {{N^2 }\over {R_{m,coil}}} +
-\end{align}+
  
 Important here is, that we assumed no stray field.  Important here is, that we assumed no stray field. 
-When taking this into account for calculating the self induction the magnetic resistance $R_{m,coil}$ ends op to be the resistance of the magnetic circuit, seen by the magnetic voltage source! +When taking this into account for calculating the self-induction the magnetic resistance $R_{\rm m,coil}$ ends op to be the resistance of the magnetic circuit, seen by the magnetic voltage source!
  
-\begin{align} +\begin{align} \boxed{L = {{N^2 }\over {R_{\rm m1}}}} \end{align}
-\boxed{L =  {{N^2 }\over {R_{m1}}}}   +
-\end{align}+
  
-The magnetic resistance $R_{m1}$ in the example <imgref ImgNr08> is $R_{m1} = R_{m,11} + (R_{m,ss}||R_{m,22})$. +The magnetic resistance $R_{\rm m1}$ in the example <imgref ImgNr08> is $R_{\rm m1} = R_{\rm m,11} + (R_{\rm m,ss}||R_{\rm m,22})$.  
-Based on this formula, the self inductions $L_{11}$ and $L_{22}$ can be written with the magnetic resistances of the coils as:+Based on this formula, the self-inductions $L_{11}$ and $L_{22}$ can be written with the magnetic resistances of the coils as:
  
-\begin{align*} +\begin{align*}  
-L_{11} & {{N_1^2 }\over {R_{m1}}} \\ +L_{11} &= {{N_1^2 }\over {R_{\rm m1}}} \\  
-L_{22} & {{N_2^2 }\over {R_{m2}}} +L_{22} &= {{N_2^2 }\over {R_{\rm m2}}} 
 \end{align*} \end{align*}
  
-In order to get the effect of the mutual induction, a coupling coefficient $k$ is introduced. +To get the effect of the mutual induction, a coupling coefficient $k$ is introduced. 
 $k_{21}$ describes how much of the flux from coil $1$ is acting on coil $2$ (similar for $k_{12}$): $k_{21}$ describes how much of the flux from coil $1$ is acting on coil $2$ (similar for $k_{12}$):
  
-\begin{align*} +\begin{align*} k_{21} = \pm {{\Phi_{21}}\over{\Phi_{11}}} \\ \end{align*}
-k_{21} = {{\Phi_{21}}\over{\Phi_{11}}} \\ +
-\end{align*}+
  
-When $k_{21}=100\%$, there is no flux in the middle leg but only in the second coil. \\  +The sign of $k_{21}$ depends on the direction of $\Phi_{21}$ relative to $\Phi_{22}$! If the directions are the same, the positive sign appliesif the directions are oposite, the minus sign applies.
-For $k_{21}=0\%all the flux is in the middle leg circumventing the second coili.e. there is no coupling. \\ +
-The resulting total coupling $k$ is given as+
  
-\begin{align*} +When $k_{21}=+100~\%$, there is no flux in the middle leg but only in the second coil and in the same direction as the flux that originates from second coil. \\  
-= \sqrt{k_{12}\cdot k_{21}\\ +When $k_{21}=-100~\%$, there is no flux in the middle leg but only in the second coil and in opposite direction as the flux that originates from the second coil. \\  
-\end{align*}+For  $k_{21}=0~\%$ all the flux is in the middle leg circumventing the second coil, i.e. there is no coupling.
  
 The mutual induction $M_{21}$ can be calculated as the fraction of the linked flux $\Psi_{11}$ in coil $2$ based on the current $i_1$ from the coil $1$ : The mutual induction $M_{21}$ can be calculated as the fraction of the linked flux $\Psi_{11}$ in coil $2$ based on the current $i_1$ from the coil $1$ :
  
-\begin{align*} +\begin{align*}  
-M_{21} &= {{\Psi_{21}}\over{i_1}}  \\ +M_{21} &= {{\Psi_{21}}                              \over{i_1}} \\  
-       &= {{N_2 \cdot \Phi_{21}}\over{i_1}}  \\ +       &= {{N_2                   \cdot   \Phi_{21}}\over{i_1}} \\  
-       &= {{N_2 \cdot k_{21} \cdot \Phi_{11}}\over{i_1}}  \\ +       &= {{N_2 \cdot k_{21}      \cdot   \Phi_{11}}\over{i_1}} \\  
-       &= {{N_2}\over{N_1}}k_{21} \cdot {{\Psi_{11}}\over{i_1}}  \\ +       &= {{N_2}\over{N_1}}k_{21} \cdot {{\Psi_{11}}\over{i_1}} \\  
-       &= {{N_2}\over{N_1}}k_{21} \cdot L_{11}  \\ +       &= {{N_2}\over{N_1}}k_{21} \cdot L_{11} \\  
-       &= {{N_2}\over{N_1}}k_{21} \cdot {{N_1^2 }\over {R_{m1}}}  \\ +       &= {{N_2}\over{N_1}}k_{21} \cdot {{N_1^2 }        \over {R_{\rm m1}}} \\  
-       &= k_{21} \cdot {{N_1 \cdot N_2 }\over {R_{m1}}}  \\+       &= k_{21}                  \cdot {{N_1 \cdot N_2 }\over {R_{\rm m1}}} \\ 
 \end{align*} \end{align*}
  
 +Note, that also $M_{21}$ and $M_{12}$ can be either positiv or negative, depending on the sign of the coupling coefficients.
  
-The formula can also be described as+The formula is finally:  
-\begin{align*} +\begin{align*}  
-\left( +\left( \begin{array}{c} \Psi_1                                                                     \\ \Psi_2                                                                     \end{array} \right)  
-\begin{array}{c} +=  
-\Psi_1 \\ +\left( \begin{array}{c} {{N_1^2}\over{R_{\rm m1}}} & k_{12}\cdot{{N_1 \cdot N_2}\over{R_{\rm m2}}} \\ k_{21}\cdot{{N_1 \cdot N_2}\over{R_{\rm m1}}} & {{N_2^2}\over{R_{\rm m2}}} \end{array} \right)  
-\Psi_2  +\cdot  
-\end{array} +\left( \begin{array}{c} i_1                                                                        \\ i_2                                                                        \end{array} \right) 
-\right) =  +
-\left( +
-\begin{array}{c} +
-{{N_1^2}\over{R_{m1}}} & k_{12}\cdot{{N_1 \cdot N_2}\over{R_{m2}}} \\ +
-k_{21}\cdot{{N_1 \cdot N_2}\over{R_{m1}}} & {{N_2^2}\over{R_{m2}}} +
-\end{array} +
-\right)  +
-\cdot +
-\left( +
-\begin{array}{c} +
-i_1 \\ +
-i_2  +
-\end{array} +
-\right) +
 \end{align*} \end{align*}
- 
  
 <panel type="info" title="Task 5.3.1 Example for magnetic Circuit with two Sources"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Task 5.3.1 Example for magnetic Circuit with two Sources"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-The magnetical configuration in <imgref ExImgNr01> shall be given. \\ +The magnetical configuration in <imgref ExImgNr01> shall be given. \\  
-The area of the cross-section is $A=9cm^2$ in all parts, the permeability is $\mu_r=800$, the length $l=12cm$ and the number of windings $N_1 = 400$, $N_2=300$. The coupling factors are $k_{12}=0.6$ and $k_{21}=0.8$.+The area of the cross-section is $A=9 ~\rm cm^2$ in all parts, the permeability is $\mu_r=800$, the length $l=12 ~\rm cm$ and the number of windings $N_1 = 400$, $N_2=300$.  
 +The coupling factors are $k_{12}=0.6$ and $k_{21}=0.8$.
  
 Calculate $L_{11}$, $M_{12}$, $L_{22}$, $M_{21}$. Calculate $L_{11}$, $M_{12}$, $L_{22}$, $M_{21}$.
  
-<WRAP> +<WRAP> <imgcaption ExImgNr01 | Example for Iron Core with two Coils> </imgcaption> {{drawio>CoreWithTwoCoils2.svg}} </WRAP>
-<imgcaption ExImgNr01 | Example for Iron Core with two Coils> +
-</imgcaption> +
-{{drawio>CoreWithTwoCoils2.svg}} +
-</WRAP>+
  
-===Step 1: Draw the problem as a network===+=== Step 1: Draw the problem as a network ===
  
 +=== Step 2: Calculate the magnetic resistances ===
  
-===Step 2: Calculate the magnetic resistances=== +The magnetic resistance is summed up by looking at the circuit from the source $1$:  
- +\begin{align*}  
-The magnetic resistance is summed up looking at the circuit from the source $1$: +R_{\rm m1} &= R_{\rm m,11} + R_{\rm m,ss} || R_{\rm m,22} \\ 
-\begin{align*} +
-R_{m1} &= R_{m,11} + R_{m,ss} || R_{m,22}  \\+
 \end{align*} \end{align*}
  
-where the parts are given as +where the parts are given as  
-\begin{align*} +\begin{align*}  
-R_{m,11} &= {{1}\over{\mu_0 \mu_{r}}}{{3\cdot l}\over{A}}  \\ +R_{\rm m,11} &= {{1}\over{\mu_0 \mu_{\rm r}}}{{3\cdot l}\over{A}} \\  
-R_{m,ss} &= {{1}\over{\mu_0 \mu_{r}}}{{1\cdot l}\over{A}}  \\ +R_{\rm m,ss} &= {{1}\over{\mu_0 \mu_{\rm r}}}{{1\cdot l}\over{A}} \\  
-R_{m,22} &= {{1}\over{\mu_0 \mu_{r}}}{{2\cdot l}\over{A}}  \\+R_{\rm m,22} &= {{1}\over{\mu_0 \mu_{\rm r}}}{{2\cdot l}\over{A}} \\ 
 \end{align*} \end{align*}
  
-With the given geometry this leads to +With the given geometry this leads to  
-\begin{align*} +\begin{align*}  
-R_{m1} &= {{1}\over{\mu_0 \mu_{r}}}{{l}\over{A}}\cdot (3 + {{1\cdot 2}\over{1 + 2}})  \\ +R_{\rm m1} &= {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}}\cdot (3 + {{1\cdot 2}\over{1 + 2}}) \\  
-       &= {{1}\over{\mu_0 \mu_{r}}}{{l}\over{A}}\cdot {{11}\over{3}}  \\ +           &= {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}}\cdot {{11}\over{3}} \\  
-       &= 133 \cdot 10^{3} \cdot {{11}\over{3}}  {{1}\over{H}}\\       +           &= 133 \cdot 10^{3}                          \cdot {{11}\over{3}} ~\rm {{1}\over{H}}\\ 
 \end{align*} \end{align*}
  
-Similarly, the magnetic resistance $R_{m2}$ is +Similarly, the magnetic resistance $R_{m2}$ is  
-\begin{align*} +\begin{align*}  
-R_{m2} &= {{1}\over{\mu_0 \mu_{r}}}{{l}\over{A}}\cdot {{11}\over{4}}  \\ +R_{\rm m2} &= {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}}\cdot {{11}\over{4}} \\  
-       &= 133 \cdot 10^{3} \cdot {{11}\over{4}}  {{1}\over{H}}\\       +           &= 133 \cdot 10^{3}                          \cdot {{11}\over{4}} ~\rm {{1}\over{H}}\\ 
 \end{align*} \end{align*}
  
-==Step 3: Calculate the magnetic inductances===+== Step 3: Calculate the magnetic inductances ==
  
-\begin{align*} +\begin{align*}  
-L_{11} &= {{N_1^2}\over{R_{m1}}}  +L_{11} &= {{N_1^2}\over{R_{\rm m1}}}                    &= 329 ~\rm mH\\ \\  
-       &= 329 mH\\        +L_{22} &= {{N_2^2}\over{R_{\rm m2}}}                    &= 247 ~\rm mH\\ \\  
-\\ +M_{21} &= k_{21}\cdot{{N_1 \cdot N_2}\over{R_{\rm m1}}} &= 197 ~\rm mH\\ \\  
-L_{22} &= {{N_2^2}\over{R_{m2}}}   +M_{12} &= k_{12}\cdot{{N_1 \cdot N_2}\over{R_{\rm m2}}} &= 197 ~\rm mH\\ 
-       &= 247 mH\\        +
-\\ +
-M_{21} &= k_{21}\cdot{{N_1 \cdot N_2}\over{R_{m1}}}   +
-       &= 197 mH\\        +
-\\ +
-M_{12} &= k_{12}\cdot{{N_1 \cdot N_2}\over{R_{m2}}}   +
-       &= 197 mH\\       +
 \end{align*} \end{align*}
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-For symmetrical magnetic structures and $\mu_r = const.$ the following applies: +For symmetrical magnetic structures and $\mu_{\rm r} \rm const.$ the following applies:
-  * the mutual inductances are equal: $M_{12}=M_{21}=M$ +
-  * the mutual inductance $M$ is: $M = \sqrt{M_{12}\cdot M_{21}} = k \cdot \sqrt {L_{11}\cdot L_{22}}$+
  
-==== Effects in the electic circuits ====+  * the mutual inductances are equal: $M_{12} = M_{21} = M$ 
 +  * the mutual inductance $M$ is:     $M = \sqrt{M_{12}\cdot M_{21}} = k \cdot \sqrt {L_{11}\cdot L_{22}}$ 
 +  * The resulting **total coupling** $k$ is given as \begin{align*} k = \rm{sgn}(k_{12}) \sqrt{k_{12}\cdot k_{21}} \end{align*} 
 + 
 +==== Effects in the electric Circuits ==== 
 + 
 +  * Whenever two coils are magnetically coupled, not only the self-induction $L$ but also the mutual induction $M$ applies. 
 +  * Based on the currents $i_1$, $i_2$ in the two circuits, the induced voltages are given by: 
 + 
 +\begin{align*}  
 +u_1 &= L_{11} \cdot {{{\rm d}i_1}\over{{\rm d}t}} &+ M      \cdot {{{\rm d}i_2}\over{{\rm d}t}} & \\  
 +u_2 &= M      \cdot {{{\rm d}i_1}\over{{\rm d}t}} &+ L_{22} \cdot {{{\rm d}i_2}\over{{\rm d}t}} & \\  
 +\end{align*} 
 + 
 +It is important to consider the polarity of the fluxes for the calculation in circuits (see <imgref ImgNr11>).  
 +The **sign of the mutual induction**  is influenced by 
 + 
 +  * the direction of the windings, and 
 +  * the orientation/counting of the current in the circuit. 
 + 
 +<WRAP center 50%> <imgcaption ImgNr11 | Polarity of Coupling> </imgcaption> {{drawio>DirectionOfCoupling.svg}} </WRAP> 
 + 
 +=== positive Polarity === 
 + 
 +The polarity is positive when both currents either flow into or out of the dotted pin (see <imgref ImgNr12>). 
 + 
 +<imgcaption ImgNr12 | Example Circuits with positive Polarity> </imgcaption> {{drawio>posCoupling.svg}} 
 + 
 +In this case, the **mutual induction is positiv $(M>0)$**. 
 + 
 +The formula of the shown circuitry is then:  
 +\begin{align*}  
 +u_1 &= R_1 \cdot i_1 &+ L_{11} \cdot {{{\rm d}i_1}\over{{\rm d}t}} &+ M \cdot {{{\rm d}i_2}\over{{\rm d}t}} & \\  
 +u_2 &= R_2 \cdot i_2 &+ L_{22} \cdot {{{\rm d}i_2}\over{{\rm d}t}} &+ M \cdot {{{\rm d}i_1}\over{{\rm d}t}} & \\  
 +\end{align*} 
 + 
 +=== negative Polarity === 
 + 
 +The polarity is negative when only one current either flows into the dotted pin and the other one out of the dotted pin (see <imgref ImgNr13>). 
 + 
 +<WRAP> <imgcaption ImgNr13 | Example Circuits with negative Polarity> </imgcaption> {{drawio>negCoupling.svg}} </WRAP> 
 + 
 +In this case, the **mutual induction is negativ $(M<0)$***. 
 + 
 +The formula of the shown circuitry is then:  
 +\begin{align*}  
 +u_1 &= R_1 \cdot i_1 &+ L_{11} \cdot {{{\rm d}i_1}\over{{\rm d}t}} & + M \cdot {{{\rm d}i_2}\over{{\rm d}t}} & \\  
 +u_2 &= R_2 \cdot i_2 &+ L_{22} \cdot {{{\rm d}i_2}\over{{\rm d}t}} & + M \cdot {{{\rm d}i_1}\over{{\rm d}t}} & \\  
 +\end{align*} 
 + 
 +<panel type="info" title="Task 5.3.2 toroidal Core with two Coils"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 + 
 +A toroidal core (ferrite, $\mu_{\rm r} = 900$) has a cross-sectional area of $A = 500 ~\rm mm^2$ and an average circumference of $l=280 ~\rm mm$.  
 +On the core, there are two coils $N_1=500$ and $N_2=250$ wound. The currents on the coils are $I_1 = 250 ~\rm mA$ and $I_2=300 ~\rm mA$. 
 + 
 +  - The coils shall pass the currents with positive polarity (see the image **A** in <imgref ImgEx14>). What is the resulting magnetic flux $\Phi_{\rm A}$ in the coil? 
 +  - The coils shall pass the currents with negative polarity (see the image **B** in <imgref ImgEx14>). What is the resulting magnetic flux $\Phi_{\rm B}$ in the coil? 
 + 
 +<WRAP> <imgcaption ImgEx14 | toroidal core with two coils in positive and negative polarity> </imgcaption> {{drawio>torCoilPosNeg.svg}} </WRAP> 
 + 
 +#@HiddenBegin_HTML~5_3_2s,Solution~@# 
 + 
 +The resulting flux can be derived from a superposition of the individual fluxes $\Phi_1(I_1)$ and $\Phi_2(I_2)$, or alternatively by summing the magnetic voltages in the loop ($\sum_x \theta_x = 0$). 
 + 
 +**Step 1 - Draw an equivalent magnetic circuit** 
 + 
 +Since there are no branches all of the core can be lumped to a single magnetic resistance (see <imgref ImgEx14circ>). 
 +<WRAP> <imgcaption ImgEx14circ | equivalent magnetic circuit> </imgcaption> {{drawio>torCoilPosNegCirc.svg}} </WRAP> 
 + 
 +**Step 2 - Get the absolute values of the individual fluxes** 
 + 
 +Hopkinson's Law can be used here as a starting point. \\ 
 +It connects the magnetic flux $\Phi$ and the magnetic voltage $\theta$ on the single magnetic resistor $R_m$. \\ 
 +It also connects the single magnetic fluxes $\Phi_x$ (with $x = {1,2}$) and the single magnetic voltages $\theta_x$. \\ 
 + 
 +\begin{align*}  
 +\theta_x             &= R_{\rm m}                                  \cdot \Phi_x \\ 
 +N_x \cdot I_x        &= {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}} \cdot \Phi_x \\ 
 +\rightarrow \Phi_x   &= \mu_0 \mu_{\rm r} {{A}\over{l}} \cdot N_x \cdot I_x  
 +                      = {{1}\over{R_{\rm m} }}          \cdot N_x \cdot I_x \\ 
 +\end{align*} 
 + 
 +With the given values we get: $R_{\rm m} = 495 {\rm {kA}\over{Vs}}$ 
 + 
 +**Step 3 - Get the signs/directions of the fluxes** 
 + 
 +The <imgref5_3_2_Solution> shows how to get the correct direction for every single flux by use of the right-hand rule. \\ 
 +The fluxes have to be added regarding these directions and the given direction of the flux in question. 
 +<WRAP> <imgcaption 5_3_2_Solution| toroidal core with two coils in positive and negative polarity> </imgcaption> {{drawio>torCoilPosNeg_solution.svg}} </WRAP> 
 + 
 +Therefore, the formulas are 
 +\begin{align*}  
 +\Phi_{\rm A}   &= \Phi_{1} - \Phi_{2} \\ 
 +               &={{1}\over{R_{\rm m} }} \cdot \left( N_1 \cdot I_1  -  N_2 \cdot I_2 \right) \\ 
 +               & 0.25 ~{\rm mVs} - 0.15 ~{\rm mVs} \\ 
 +\Phi_{\rm B}   &\Phi_{1} + \Phi_{2} \\ 
 +               &={{1}\over{R_{\rm m} }} \cdot \left( N_1 \cdot I_1  +  N_2 \cdot I_2 \right) \\ 
 +               & 0.25 ~{\rm mVs} + 0.15 ~{\rm mVs}  
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~5_3_2s,Solution~@# 
 + 
 + 
 +#@HiddenBegin_HTML~5_3_2r,Result~@# 
 +  - $0.10 ~\rm  mVs$ 
 +  - $0.40 ~\rm mVs$ 
 +#@HiddenEnd_HTML~5_3_2r,Result~@# 
 + 
 +</WRAP></WRAP></panel>
  
 ===== 5.4 Magnetic Energy ===== ===== 5.4 Magnetic Energy =====
  
 +The magnetic field of a coil stores magnetic energy. 
 +The energy transfer from the electric circuit to the magnetic field is also the cause of the "current dampening" effect of the inductor. 
 +The energetic turnover for charging an conductor from $i(t_0=0)=0$ to $i(t_1)=I$ is given by:
 +
 +\begin{align*} W_m = \int_0^\infty u(t)\cdot i(t) {\rm d}t \end{align*}
 +
 +With $u_L = L \cdot {\rm d}i/{\rm d}t$, this becomes:
 +
 +\begin{align*} 
 +W_{\rm m} &       \int_0^\infty L\cdot {{{\rm d}i}\over{{\rm d}t}}\cdot i(t) {\rm d}t \\ 
 +          &       \int_0^\infty L\cdot                                  i(t) {\rm d}i \\ 
 +          &= L\cdot \int_0^\infty                                         i(t) {\rm d}i \\ 
 +          &= L\cdot \left[ {{1}\over{2}}i^2\right]_0^I \\ 
 +
 +\boxed{W_m = {{1}\over{2}}L\cdot I^2 } 
 +\end{align*}
 +
 +
 +
 +
 +
 +==== magnetic Energy of a magnetic Circuit ====
 +
 +With this formula also the stored energy in a magnetic circuit can be calculated. For this, the formula be rewritten by the properties linked flux $\Psi = N \cdot \Phi = L \cdot I$ and magnetic voltage $\theta=N \cdot I = \Phi \cdot R_{\rm m}$ of the magnetic circuit: \begin{align*} \boxed{W_{\rm m} = {{1}\over{2}} \Psi \cdot I = {{1}\over{2}} {{\Psi^2}\over{L}}= {{1}\over{2}}{{\Phi^2 }\over{N^2 \cdot L}} = {{1}\over{2}} \Phi^2 \cdot R_{\rm m} = {{1}\over{2}}{{\theta^2 }\over{R_{\rm m}}}} \end{align*}
 +
 +==== magnetic Energy of a toroid Coil ====
 +
 +The formula can also be used for calculating the stored energy of a toroid coil with $N$ windings, the cross-section $A$, and an average length $l$ of a field line. 
 +By this, the following formulas can be used: 
 +\begin{align*} 
 +\theta = H \cdot l = N \cdot I \\ 
 +\Phi   = B \cdot A 
 +\end{align*}
 +
 +With the above-mentioned formulas of the magnetic circuit, we get: 
 +\begin{align*} 
 +W_{\rm m} &= {{1}\over{2}} \Psi             \cdot I \\ 
 +          &= {{1}\over{2}}N \cdot B \cdot A \cdot {{H \cdot l}\over{N}} \\ 
 +          &= {{1}\over{2}}B \cdot H \cdot A \cdot l \\ 
 +\end{align*} \begin{align*} 
 +\boxed{W_{\rm m} = {{1}\over{2}}B\cdot H \cdot V} 
 +\end{align*}
 +
 +The **magnetic energy density**  $w_{\rm m}$ can therefore be calculated as: 
 +\begin{align*} 
 +w_{\rm m} &= {{W_{\rm m}}\over{V}} \\ 
 +          &= {{1}\over{2}} B \cdot H \\ 
 +\end{align*}
 +
 +This formula is also true for other types of coils.
 +
 +==== generalized magnetic Energy ====
 +
 +The general term to find the magnetic energy (e.g. for inhomogeneous magnetic fields) is given by 
 +\begin{align*} 
 +W_{\rm m} &= \iiint_V{w_{\rm m}            {\rm d}V} \\ 
 +          &= \iiint_V{\vec{B}\cdot \vec{H} {\rm d}V} 
 +\end{align*}
 +
 +==== Application of the magnetic Energy ====
 +
 +The circuit shown in <imgref ImgNr14> shall now be investigated. 
 +The inductor shall be a toroid coil with $N$ windings, the cross-section $A$, and an average length $l$ of a field line.
 +
 +<WRAP> <imgcaption ImgNr14 | Example Circuits for calculating the magnetic Energy> </imgcaption> {{drawio>CircuitMagnEnergy.svg}} </WRAP>
 +
 +The Kirchhoff mesh law leads to:
 +
 +\begin{align*} 
 +u_{\rm s} = u_R       + u_L \\ 
 +u_{\rm s} = R \cdot i + N {{{\rm d}\Phi}\over{{\rm d}t}} 
 +\end{align*}
 +
 +Multiplying with $i$ and with $dt$ we get the principle of conservation of energy $dw = u \cdot i \cdot {\rm d}t$ for each small time step.
 +
 +\begin{align*} 
 +u_{\rm s} \cdot i \cdot dt &= R \cdot i^2 \cdot {\rm d}t   & + N {{{\rm d}\Phi}\over{dt}} \cdot i \cdot {\rm d}t   & \\ 
 +                        dW &                  {\rm d}W_R & +                                          {\rm d}W_m & 
 +\end{align*}
 +
 +In this way, we get the magnetic energy as: 
 +\begin{align*} 
 +dW_{\rm m} &= N {{{\rm d}\Phi}\over{{\rm d}t}}          \cdot i \cdot {\rm d}t \\ 
 + W_{\rm d} &  \int                                                  {\rm d}W_{\rm m} \\ 
 +           &= N \int_0^t {{{\rm d}\Phi}\over{{\rm d}t}} \cdot i \cdot {\rm d}t \\ 
 +           &= N \int_0^                                {\Phi} i \cdot {\rm d}\Phi \\ 
 +\end{align*}
 +
 +In a toroid coil with a given cross-section $A$ the flux change ${\rm d}\Phi$ can only be given as a change in the field $B$. 
 +Therefore, ${\rm d}\Phi = A \cdot {\rm d}B$. Additionally, we know that the magnetic voltage is given by $\theta(t) = N \cdot i = H(t) \cdot l$. 
 +Including this in the formula gives us:
 +
 +\begin{align*} 
 +W_{\rm m} &= N \int_0^{B} I            \cdot A \cdot {\rm d}B \\ 
 +          &  \int_0^{B} H(B) \cdot l \cdot A \cdot {\rm d}B \\ 
 +          &= V \int_0^{B} H(B)                 \cdot {\rm d}B \\ 
 +\end{align*}
 +
 +We can conclude that the magnetic energy $W_{\rm m}$: 
 +$W_{\rm m}$ can be calculated from the $H$-$B$ curve by integrating the external magnetic field strength $H$ for each small step of the flux density ${\rm d}B$. 
 +This will be shown for the case of a linear magnetic behavior, a nonlinear behavior, and the situation with magnetic hysteresis shortly.
 +
 +=== Circuit with linear magnetic Behavior ===
 +
 +In <imgref ImgNr15> the situation for a magnetic material with a linear relationship between $B$ and $H$ is shown. 
 +Given by the maximum current $I_{\rm max}$ the maximum field strength $H_{\rm max}$ can be derived. 
 +In the circuit in <imgref ImgNr14>, the inductor will experience increasing and decreasing current. 
 +Therefore, the $B$-$H$-curve gets passed through positive and negative values of $H$ and $H$ along the line of $B=\mu H$.
 +
 +<WRAP> <imgcaption ImgNr15 | H-B-Curve for linear material> </imgcaption> {{drawio>HBcurveLin.svg}} </WRAP>
 +
 +The situation for integrating the area in the graph is also shown: 
 +For each step ${\rm d}B$ the corresponding value of the field strength $H$ has to be integrated. 
 +For $B_0=0$ to $B=B_{\rm max}$ the magnetic energy is
 +
 +\begin{align*} 
 +W_{\rm m} &              V\int_0^{B}              H(B) \cdot {\rm d}B \\ 
 +          &              V\int_0^{B} {{B  }\over{\mu}} \cdot {\rm d}B \\ 
 +          &= {{1}\over{2}} V           {{B^2}\over{\mu}} \\ 
 +          &= {{1}\over{2}} V \cdot       B \cdot H \\ 
 +\end{align*}
 +
 +This situation is a good approximation for air or non-magnetic materials. 
 +However, it does not work well for ferrite materials, since they show nonlinear behavior and hysteresis.
 +
 +=== Circuit with nonlinear magnetic Behavior ===
 +
 +In <imgref ImgNr15> the situation for a magnetic material with a nonlinear relationship between $B$ and $H$ is shown.
 +
 +<WRAP> <imgcaption ImgNr16 | H-B-Curve for nonlinear material> </imgcaption> {{drawio>HBcurveNonLin.svg}} </WRAP>
 +
 +In this case, the permeability $\mu_{\rm r}$ is not a constant but can be represented as a function: $\mu_{\rm r}= f(B)$. 
 +Here, the formula $W_{\rm m} = V\int_0^{B} H(B) \cdot {\rm d}B$ also applies - so the magnetic energy is again the area between the curve and the $B$-axis. 
 +As an example, the situation of the field strength $H(t_1)=H_1$ is shown. 
 +This shall be the field strength after magnetizing the ferrite material to $H_{\rm max}$ (yellow arrows) and then partly demagnetizing the material again (blue arrow). 
 +The magnetization corresponds to an energy intake to the magnetic field and the demagnetization to an energy outtake.
 +
 +Moving along the $H$-$B$-curve, one can see, that the energy intake and outtake are the same when coming back to a start point. 
 +This means that the magnetization and demagnetization take place lossless in this example. 
 +This is a good approximation for magnetically soft materials, however, does not work for magnetically hard materials like a permanent magnet. 
 +Here, hysteresis also has to be considered.
 +
 +=== Circuit with magnetic Hysteresis ===
 +
 +<WRAP> <imgcaption ImgNr17 | H-B-Curve material with Hysteresis> </imgcaption> {{drawio>HBcurvehyst.svg}} </WRAP>
  
 ===== Tasks ===== ===== Tasks =====
  
-<panel type="info" title="Task 5.1.Application: Shaded Pole Motor"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Task 5.1.Application: Shaded Pole Motor"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-The <imgref ImgTask01> and <imgref ImgTask01> show a shaded pole motor of a commercial oven.  +The <imgref ImgTask01> and <imgref ImgTask01> show a shaded pole motor of a commercial oven. 
-  * Find out how this motor works - explicitly: why is there a prefered direction of the motor?+ 
 +  * Find out how this motor works - explicitly: why is there a preferred direction of the motor?
   * In which direction does the shown motor run?   * In which direction does the shown motor run?
  
-<WRAP group> +<WRAP group> <WRAP column half> <imgcaption ImgTask01 | Core of a shaded Pole Motor> {{:electrical_engineering_2:shadedpolemotor_core.jpg?400|shadedpolemotor_core.jpg}}</imgcaption>
-<WRAP column half> +
-<imgcaption ImgTask01 | Core of a shaded Pole Motor> +
-{{electrical_engineering_2:shadedpolemotor_core.jpg?400}} +
-</imgcaption>+
  
-</WRAP> +</WRAP> <WRAP column half>
-<WRAP column half>+
  
-<imgcaption ImgTask02 | Setup of the full shaded Pole Motor> +<imgcaption ImgTask02 | Setup of the full shaded Pole Motor> {{:electrical_engineering_2:shadedpolemotor.jpg?450|shadedpolemotor.jpg}}</imgcaption> </WRAP> </WRAP>
-{{electrical_engineering_2:shadedpolemotor.jpg?450}} +
-</imgcaption> +
-</WRAP> +
-</WRAP>+
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-<panel type="info" title="Task 5.1.Further Tasks"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Task 5.1.10 Further exercise"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-The book [[https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electronics/DC_Electrical_Circuit_Analysis_-_A_Practical_Approach_(Fiore)/10%3A_Magnetic_Circuits_and_Transformers/10.3%3A_Magnetic_Circuits| DC Electrical Circuit Analysis - A Practical Approach (Fiore)]] has some nice tasks for beginning in the topic of magnetic circuits+The book [[https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electronics/DC_Electrical_Circuit_Analysis_-_A_Practical_Approach_(Fiore)/10%3A_Magnetic_Circuits_and_Transformers/10.3%3A_Magnetic_Circuits|DC Electrical Circuit Analysis - A Practical Approach (Fiore)]] has some nice exercise for beginning in the topic of magnetic circuits.
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
 ===== Further Information ===== ===== Further Information =====
 +
 +An alternative interpretation of the magnetic circuits is the {{https://en.wikipedia.org/wiki/Gyrator–capacitor model|Gyrator–capacitor model}}. 
 +The big difference there is, that there the magnetic flux $\Phi$ is not interpreted as an analogy to the electric current $I$ but to the electric charge $Q$. 
 +This model can solve more questions, however, is a bit less intuitive based on this course and less commonly used compared to the {{https://en.wikipedia.org/wiki/Magnetic_circuit#Resistance–reluctance_model|Magnetic_circuit}}, which was also presented in this chapter.
 +
 +==== Moving a Plate into an Air Gap ====
 +
 +<WRAP> <imgcaption ImgNr81 | a magnetic circuit with a moving plate> {{electrical_engineering_2:plate_in_airgap_50_.gif}} {{electrical_engineering_2:stiftt_in_luftspalt_2.3.gif}} </imgcaption> </WRAP>
  
 ==== Switch Reluctance Motor ==== ==== Switch Reluctance Motor ====
  
-<WRAP> +<WRAP> <imgcaption ImgNr98 | a switch reluctance Motor as an application for the magnetic resistance> {{:electrical_engineering_2:switched_reluctance_motor_rotation_animation.gif}}</imgcaption> </WRAP> Based on a [[https://commons.wikimedia.org/wiki/File:Switched_Reluctance_motor_rotation_animation.gif|wikimedia image]] from Hamidreza D ([[https://creativecommons.org/licenses/by-sa/4.0/deed.en|CC-SA 4.0]])
-<imgcaption ImgNr98 | a switch reluctance Motor as an application for the magnetic resistance> +
-{{electrical_engineering_2:switched_reluctance_motor_rotation_animation.gif}} +
-</imgcaption> +
-</WRAP> +
-Based on a [[https://commons.wikimedia.org/wiki/File:Switched_Reluctance_motor_rotation_animation.gif|wikimedia image]] from Hamidreza D ([[https://creativecommons.org/licenses/by-sa/4.0/deed.en|CC-SA 4.0]])+
  
 ==== Resolver ==== ==== Resolver ====
  
 +<WRAP> <imgcaption ImgNr99 | Resolver> </imgcaption> {{drawio>Resolver.svg}} </WRAP>
  
-<WRAP> +<WRAP> <imgcaption ImgNr100 Overview of the magnetic Formalism> </imgcaption> {{drawio>OverviewONMagnetics}} </WRAP>
-<imgcaption ImgNr99 Resolver> +
-</imgcaption> +
-{{drawio>Resolver}} +
-</WRAP> +
  
-<WRAP> 
-<imgcaption ImgNr100 | Overview of the magnetic Formalism> 
-</imgcaption> 
-{{drawio>OverviewONMagnetics}} 
-</WRAP>