Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:magnetic_circuits [2023/05/09 14:30]
mexleadmin
electrical_engineering_2:magnetic_circuits [2024/05/03 16:02] (aktuell)
mexleadmin [Magnetic Circuit with two Sources]
Zeile 1: Zeile 1:
-====== 5Magnetic Circuits ======+====== 5 Magnetic Circuits ======
  
 <callout> For this and the following chapter the online Book 'DC Electrical Circuit Analysis - A Practical Approach' is strongly recommended as a reference. In detail this is chapter [[https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electronics/DC_Electrical_Circuit_Analysis_-_A_Practical_Approach_(Fiore)/10%3A_Magnetic_Circuits_and_Transformers/10.3%3A_Magnetic_Circuits|10.3 Magnetic Circuits]] </callout> <callout> For this and the following chapter the online Book 'DC Electrical Circuit Analysis - A Practical Approach' is strongly recommended as a reference. In detail this is chapter [[https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electronics/DC_Electrical_Circuit_Analysis_-_A_Practical_Approach_(Fiore)/10%3A_Magnetic_Circuits_and_Transformers/10.3%3A_Magnetic_Circuits|10.3 Magnetic Circuits]] </callout>
Zeile 9: Zeile 9:
 In this chapter, we will investigate, how far we come with such an analogy and where it can be practically applied. In this chapter, we will investigate, how far we come with such an analogy and where it can be practically applied.
  
-===== 5.1 Linear magnetic Circuits =====+===== 5.1 Linear Magnetic Circuits =====
  
 For the upcoming calculations, the following assumptions are made For the upcoming calculations, the following assumptions are made
Zeile 168: Zeile 168:
 Calculate the magnetic resistances of cylindrical coreless (=ironless) coils with the following dimensions: Calculate the magnetic resistances of cylindrical coreless (=ironless) coils with the following dimensions:
  
-  - $l=35.8~\rm cm$, $d=1.9~\rm cm$ +  - $l=35.8~\rm cm$, $d=1.90~\rm cm$ 
-  - $l=22.5~\rm cm$, $d=1.5~\rm cm$+  - $l=11.1~\rm cm$, $d=1.50~\rm cm$
  
-<button size="xs" type="link" collapse="Solution_5_1_2_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_1_2_1_Result" collapsed="true">+#@HiddenBegin_HTML~5_1_2s,Solution~@#
  
-  - $1.5\cdot 10^5 ~\rm {{1}\over{H}}$ +The magnetic resistance is given by: 
-  - $3.0\cdot 10^5 ~\rm {{1}\over{H}}$+\begin{align*} 
 +\ R_{\rm m} &{{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}}  
 +\end{align*}
  
-</collapse>+With 
 +  * the area $ A = \left({{d}\over{2}}\right)^2 \cdot \pi $ 
 +  * the vacuum magnetic permeability $\mu_{0}=4\pi\cdot 10^{-7} ~\rm H/m$, and  
 +  * the relative permeability $\mu_{\rm r}=1$. 
 + 
 +#@HiddenEnd_HTML~5_1_2s,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~5_1_2r,Result~@# 
 +  - $1.00\cdot 10^9 ~\rm {{1}\over{H}}$ 
 +  - $0.50\cdot 10^9 ~\rm {{1}\over{H}}$ 
 +#@HiddenEnd_HTML~5_1_2r,Result~@#
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 393: Zeile 405:
 $k_{21}$ describes how much of the flux from coil $1$ is acting on coil $2$ (similar for $k_{12}$): $k_{21}$ describes how much of the flux from coil $1$ is acting on coil $2$ (similar for $k_{12}$):
  
-\begin{align*} k_{21} = {{\Phi_{21}}\over{\Phi_{11}}} \\ \end{align*}+\begin{align*} k_{21} = \pm {{\Phi_{21}}\over{\Phi_{11}}} \\ \end{align*}
  
-When $k_{21}=100~\%$, there is no flux in the middle leg but only in the second coil. \\ +The sign of $k_{21}$ depends on the direction of $\Phi_{21}$ relative to $\Phi_{22}$! If the directions are the same, the positive sign applies, if the directions are oposite, the minus sign applies. 
 + 
 +When $k_{21}=+100~\%$, there is no flux in the middle leg but only in the second coil and in the same direction as the flux that originates from second coil. \\  
 +When $k_{21}=-100~\%$, there is no flux in the middle leg but only in the second coil and in opposite direction as the flux that originates from the second coil. \\ 
 For  $k_{21}=0~\%$ all the flux is in the middle leg circumventing the second coil, i.e. there is no coupling. For  $k_{21}=0~\%$ all the flux is in the middle leg circumventing the second coil, i.e. there is no coupling.
  
Zeile 409: Zeile 424:
        &= k_{21}                  \cdot {{N_1 \cdot N_2 }\over {R_{\rm m1}}} \\         &= k_{21}                  \cdot {{N_1 \cdot N_2 }\over {R_{\rm m1}}} \\ 
 \end{align*} \end{align*}
 +
 +Note, that also $M_{21}$ and $M_{12}$ can be either positiv or negative, depending on the sign of the coupling coefficients.
  
 The formula is finally:  The formula is finally: 
Zeile 473: Zeile 490:
   * the mutual inductances are equal: $M_{12} = M_{21} = M$   * the mutual inductances are equal: $M_{12} = M_{21} = M$
   * the mutual inductance $M$ is:     $M = \sqrt{M_{12}\cdot M_{21}} = k \cdot \sqrt {L_{11}\cdot L_{22}}$   * the mutual inductance $M$ is:     $M = \sqrt{M_{12}\cdot M_{21}} = k \cdot \sqrt {L_{11}\cdot L_{22}}$
-  * The resulting *total coupling* $k$ is given as \begin{align*} k = \sqrt{k_{12}\cdot k_{21}} \end{align*}+  * The resulting **total coupling** $k$ is given as \begin{align*} k = \rm{sgn}(k_{12}) \sqrt{k_{12}\cdot k_{21}} \end{align*}
  
 ==== Effects in the electric Circuits ==== ==== Effects in the electric Circuits ====
Zeile 499: Zeile 516:
 <imgcaption ImgNr12 | Example Circuits with positive Polarity> </imgcaption> {{drawio>posCoupling.svg}} <imgcaption ImgNr12 | Example Circuits with positive Polarity> </imgcaption> {{drawio>posCoupling.svg}}
  
-In this case, the **mutual induction added positively**.+In this case, the **mutual induction is positiv $(M>0)$**.
  
 The formula of the shown circuitry is then:  The formula of the shown circuitry is then: 
Zeile 513: Zeile 530:
 <WRAP> <imgcaption ImgNr13 | Example Circuits with negative Polarity> </imgcaption> {{drawio>negCoupling.svg}} </WRAP> <WRAP> <imgcaption ImgNr13 | Example Circuits with negative Polarity> </imgcaption> {{drawio>negCoupling.svg}} </WRAP>
  
-In this case, the **mutual induction added negatively**.+In this case, the **mutual induction is negativ $(M<0)$***.
  
 The formula of the shown circuitry is then:  The formula of the shown circuitry is then: 
 \begin{align*}  \begin{align*} 
-u_1 &= R_1 \cdot i_1 &+ L_{11} \cdot {{{\rm d}i_1}\over{{\rm d}t}} &M \cdot {{{\rm d}i_2}\over{{\rm d}t}} & \\  +u_1 &= R_1 \cdot i_1 &+ L_{11} \cdot {{{\rm d}i_1}\over{{\rm d}t}} & M \cdot {{{\rm d}i_2}\over{{\rm d}t}} & \\  
-u_2 &= R_2 \cdot i_2 &+ L_{22} \cdot {{{\rm d}i_2}\over{{\rm d}t}} &M \cdot {{{\rm d}i_1}\over{{\rm d}t}} & \\ +u_2 &= R_2 \cdot i_2 &+ L_{22} \cdot {{{\rm d}i_2}\over{{\rm d}t}} & M \cdot {{{\rm d}i_1}\over{{\rm d}t}} & \\ 
 \end{align*} \end{align*}
  
-<panel type="info" title="Task 5.3.toroidal Core with two Coils"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Task 5.3.toroidal Core with two Coils"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
 A toroidal core (ferrite, $\mu_{\rm r} = 900$) has a cross-sectional area of $A = 500 ~\rm mm^2$ and an average circumference of $l=280 ~\rm mm$.  A toroidal core (ferrite, $\mu_{\rm r} = 900$) has a cross-sectional area of $A = 500 ~\rm mm^2$ and an average circumference of $l=280 ~\rm mm$. 
 On the core, there are two coils $N_1=500$ and $N_2=250$ wound. The currents on the coils are $I_1 = 250 ~\rm mA$ and $I_2=300 ~\rm mA$. On the core, there are two coils $N_1=500$ and $N_2=250$ wound. The currents on the coils are $I_1 = 250 ~\rm mA$ and $I_2=300 ~\rm mA$.
  
-  - The coils shall pass the currents with positive polarity (see the top image in <imgref ImgEx14>).    What is the magnetic flux in the coil? +  - The coils shall pass the currents with positive polarity (see the image **A** in <imgref ImgEx14>). What is the resulting magnetic flux $\Phi_{\rm A}$ in the coil? 
-  - The coils shall pass the currents with negative polarity (see the bottom image in <imgref ImgEx14>). What is the magnetic flux in the coil?+  - The coils shall pass the currents with negative polarity (see the image **B** in <imgref ImgEx14>). What is the resulting magnetic flux $\Phi_{\rm B}$ in the coil?
  
 <WRAP> <imgcaption ImgEx14 | toroidal core with two coils in positive and negative polarity> </imgcaption> {{drawio>torCoilPosNeg.svg}} </WRAP> <WRAP> <imgcaption ImgEx14 | toroidal core with two coils in positive and negative polarity> </imgcaption> {{drawio>torCoilPosNeg.svg}} </WRAP>
  
-<button size="xs" type="link" collapse="Solution_5_3_1_1_Result">{{icon>eye}} Result</button><collapse id="Solution_5_3_1_1_Result" collapsed="true">+#@HiddenBegin_HTML~5_3_2s,Solution~@#
  
-  - $0.40 ~\rm  mVs$ +The resulting flux can be derived from a superposition of the individual fluxes $\Phi_1(I_1)and $\Phi_2(I_2)$, or alternatively by summing the magnetic voltages in the loop ($\sum_x \theta_x = 0$).
-  - $0.10 ~\rm mVs$+
  
-</collapse>+**Step 1 - Draw an equivalent magnetic circuit** 
 + 
 +Since there are no branches all of the core can be lumped to a single magnetic resistance (see <imgref ImgEx14circ>). 
 +<WRAP> <imgcaption ImgEx14circ | equivalent magnetic circuit> </imgcaption> {{drawio>torCoilPosNegCirc.svg}} </WRAP> 
 + 
 +**Step 2 - Get the absolute values of the individual fluxes** 
 + 
 +Hopkinson's Law can be used here as a starting point. \\ 
 +It connects the magnetic flux $\Phi$ and the magnetic voltage $\theta$ on the single magnetic resistor $R_m$. \\ 
 +It also connects the single magnetic fluxes $\Phi_x$ (with $x = {1,2}$) and the single magnetic voltages $\theta_x$. \\ 
 + 
 +\begin{align*}  
 +\theta_x             &= R_{\rm m}                                  \cdot \Phi_x \\ 
 +N_x \cdot I_x        &= {{1}\over{\mu_0 \mu_{\rm r}}}{{l}\over{A}} \cdot \Phi_x \\ 
 +\rightarrow \Phi_x   &= \mu_0 \mu_{\rm r} {{A}\over{l}} \cdot N_x \cdot I_x  
 +                      = {{1}\over{R_{\rm m} }}          \cdot N_x \cdot I_x \\ 
 +\end{align*} 
 + 
 +With the given values we get: $R_{\rm m} = 495 {\rm {kA}\over{Vs}}$ 
 + 
 +**Step 3 - Get the signs/directions of the fluxes** 
 + 
 +The <imgref5_3_2_Solution> shows how to get the correct direction for every single flux by use of the right-hand rule. \\ 
 +The fluxes have to be added regarding these directions and the given direction of the flux in question. 
 +<WRAP> <imgcaption 5_3_2_Solution| toroidal core with two coils in positive and negative polarity> </imgcaption> {{drawio>torCoilPosNeg_solution.svg}} </WRAP> 
 + 
 +Therefore, the formulas are 
 +\begin{align*}  
 +\Phi_{\rm A}   &= \Phi_{1} - \Phi_{2} \\ 
 +               &={{1}\over{R_{\rm m} }} \cdot \left( N_1 \cdot I_1  -  N_2 \cdot I_2 \right) \\ 
 +               & = 0.25 ~{\rm mVs} - 0.15 ~{\rm mVs} \\ 
 +\Phi_{\rm B}   &= \Phi_{1} + \Phi_{2} \\ 
 +               &={{1}\over{R_{\rm m} }} \cdot \left( N_1 \cdot I_1  +  N_2 \cdot I_2 \right) \\ 
 +               & = 0.25 ~{\rm mVs} + 0.15 ~{\rm mVs}  
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~5_3_2s,Solution~@# 
 + 
 + 
 +#@HiddenBegin_HTML~5_3_2r,Result~@# 
 +  - $0.10 ~\rm  mVs$ 
 +  - $0.40 ~\rm mVs$ 
 +#@HiddenEnd_HTML~5_3_2r,Result~@#
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 558: Zeile 616:
 \boxed{W_m = {{1}\over{2}}L\cdot I^2 }  \boxed{W_m = {{1}\over{2}}L\cdot I^2 } 
 \end{align*} \end{align*}
 +
 +
 +
 +
  
 ==== magnetic Energy of a magnetic Circuit ==== ==== magnetic Energy of a magnetic Circuit ====
  
-With this formula also the stored energy in a magnetic circuit can be calculated.  +With this formula also the stored energy in a magnetic circuit can be calculated. For this, the formula be rewritten by the properties linked flux $\Psi = N \cdot \Phi = L \cdot I$ and magnetic voltage $\theta=N \cdot I = \Phi \cdot R_{\rm m}$ of the magnetic circuit: \begin{align*} \boxed{W_{\rm m} = {{1}\over{2}} \Psi \cdot I = {{1}\over{2}} {{\Psi^2}\over{L}}= {{1}\over{2}}{{\Phi^2 }\over{N^2 \cdot L}} = {{1}\over{2}} \Phi^2 \cdot R_{\rm m} = {{1}\over{2}}{{\theta^2 }\over{R_{\rm m}}}} \end{align*}
-For this, the formula be rewritten by the properties linked flux $\Psi = N \cdot \Phi = L \cdot I$ and magnetic voltage $\theta=N \cdot I = \Phi \cdot R_{\rm m}$ of the magnetic circuit:  +
-\begin{align*}  +
-\boxed{W_{\rm m} = {{1}\over{2}}  \Psi\cdot I  +
-                 = {{1}\over{2}}{{\Psi^2 }\over{L}}}  +
-\end{align*}+
  
 ==== magnetic Energy of a toroid Coil ==== ==== magnetic Energy of a toroid Coil ====
Zeile 717: Zeile 774:
 The big difference there is, that there the magnetic flux $\Phi$ is not interpreted as an analogy to the electric current $I$ but to the electric charge $Q$.  The big difference there is, that there the magnetic flux $\Phi$ is not interpreted as an analogy to the electric current $I$ but to the electric charge $Q$. 
 This model can solve more questions, however, is a bit less intuitive based on this course and less commonly used compared to the {{https://en.wikipedia.org/wiki/Magnetic_circuit#Resistance–reluctance_model|Magnetic_circuit}}, which was also presented in this chapter. This model can solve more questions, however, is a bit less intuitive based on this course and less commonly used compared to the {{https://en.wikipedia.org/wiki/Magnetic_circuit#Resistance–reluctance_model|Magnetic_circuit}}, which was also presented in this chapter.
 +
 +==== Moving a Plate into an Air Gap ====
 +
 +<WRAP> <imgcaption ImgNr81 | a magnetic circuit with a moving plate> {{electrical_engineering_2:plate_in_airgap_50_.gif}} {{electrical_engineering_2:stiftt_in_luftspalt_2.3.gif}} </imgcaption> </WRAP>
  
 ==== Switch Reluctance Motor ==== ==== Switch Reluctance Motor ====