Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:the_electrostatic_field [2023/05/12 14:21]
mexleadmin
electrical_engineering_2:the_electrostatic_field [2024/07/01 13:08] (aktuell)
mexleadmin [Bearbeiten - Panel]
Zeile 1: Zeile 1:
-====== 1The Electrostatic Field ======+====== 1 The Electrostatic Field ======
  
 <callout> <callout>
Zeile 22: Zeile 22:
   - **{{wp>Electrostatics}}** is the study of charges at rest and consequently electric fields that do not vary over time. As a result, the electrical quantities have no temporal dependence. \\ For any function of the electric quantities,  ${{{\rm d}  f}\over{{\rm d} t}}=0$ holds mathematically.    - **{{wp>Electrostatics}}** is the study of charges at rest and consequently electric fields that do not vary over time. As a result, the electrical quantities have no temporal dependence. \\ For any function of the electric quantities,  ${{{\rm d}  f}\over{{\rm d} t}}=0$ holds mathematically. 
   - **{{wp>Electrodynamics}}** describes the behavior of moving charges. Hence, electrodynamics covers both changing electric fields and magnetic fields. \\ For the time being, the simple explanation will be that magnetic fields are dependent on current or charge flow. \\ It is no longer true in electrodynamics that the derivative is always necessary for any function of electric values.   - **{{wp>Electrodynamics}}** describes the behavior of moving charges. Hence, electrodynamics covers both changing electric fields and magnetic fields. \\ For the time being, the simple explanation will be that magnetic fields are dependent on current or charge flow. \\ It is no longer true in electrodynamics that the derivative is always necessary for any function of electric values.
- 
- 
-First, we will differentiate some terms: 
-  - **{{wp>Electricity}}** describes as an umbrella term all phenomena of moving and resting charges. \\ \\ 
-  - **{{wp>Electrostatics}}** describes the phenomena of charges at rest and thus of electric fields which do not change in time. Thus, there is no time dependence on the electrical quantities. \\ Mathematically, ${{{\rm d}  f}\over{{\rm d} t}}=0$ holds for any function of the electric quantities. \\ \\ 
-  - **{{wp>Electrodynamics}}** describes the phenomena of moving charges. Thus electrodynamics includes both electric fields that change with time and magnetic fields. \\ For the present state of the course, the simple explanation shall be, that magnetic fields are based on a current or a charge movement. \\ In electrodynamics, it is no longer valid for every function of the electric quantities, that the derivative is necessarily equal to zero. \\  
  
 Only electrostatics is discussed in this chapter. For the time being, magnetic fields are thus excluded. Only electrostatics is discussed in this chapter. For the time being, magnetic fields are thus excluded.
Zeile 204: Zeile 198:
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-<panel type="info" title="Task 1.1.Field lines"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Task 1.1.Field lines"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
 Sketch the field line plot for the charge configurations given in <imgref ImgNr04>. \\ Sketch the field line plot for the charge configurations given in <imgref ImgNr04>. \\
Zeile 306: Zeile 300:
 {{youtube>QWOwK-zyEnE}} {{youtube>QWOwK-zyEnE}}
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
 +
 +{{page>task_1.1.3_with_calc&nofooter}}
 +{{page>task_1.1.4&nofooter}}
 +{{page>task_1.1.5&nofooter}}
 +
  
 =====1.3 Work and Potential ===== =====1.3 Work and Potential =====
Zeile 527: Zeile 526:
  
 </callout> </callout>
- 
-==== Tasks ==== 
- 
-{{page>task_1.1.3_with_calc&nofooter}} 
-{{page>task_1.1.4&nofooter}} 
-{{page>task_1.1.5&nofooter}} 
  
 =====1.4 Conductors in the Electrostatic Field ===== =====1.4 Conductors in the Electrostatic Field =====
Zeile 674: Zeile 667:
 {{page>task_1.4.4&nofooter}} {{page>task_1.4.4&nofooter}}
  
 +<wrap anchor #exercise_1_4_5 />
 <panel type="info" title="Task 1.4.5 Simulation"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Task 1.4.5 Simulation"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
Zeile 688: Zeile 682:
  
  
---> Answer #+#@HiddenBegin_HTML~1,Result~@#
  
 $\varrho_2 < \varrho_3 < \varrho_1 < \varrho_4$ $\varrho_2 < \varrho_3 < \varrho_1 < \varrho_4$
Zeile 695: Zeile 689:
 <imgcaption ImgNr031 | examples of field lines> <imgcaption ImgNr031 | examples of field lines>
 </imgcaption> <WRAP> </imgcaption> <WRAP>
-{{url>https://www.falstad.com/emstatic/EMStatic.html?rol=$+1+256+128+0+7+421+0.048828125+364%0Ae+1+2+0+256+256+276+276+0%0Ae+1+2+0+256+256+276+276+0%0Ae+1+2+100+64+84+124+144+0%0Ae+0+2+0+256+256+276+276+0%0Ae+0+2+100+69+81+146+126+0%0Ae+0+2+100+147+96+162+100+0%0Ae+0+2+100+92+88+158+109+0%0Aw+0+2+100+112+138+157+99%0Aw+0+2+100+146+105+169+89%0Ae+0+2+100+104+91+165+96+0%0AE+1+2+100+45+55+135+145+55+65+129+139+0%0AE+1+2+100+62+63+93+94+68+69+87+88+0%0Ae+0+2+100+86+60+125+107+0%0Ae+0+2+100+54+93+92+132+0%0Ae+0+2+100+85+56+106+74+0%0Ae+0+2+100+51+79+73+113+0%0Ae+0+2+100+110+84+140+103+0%0A 600,600 noborder}}+{{url>https://www.falstad.com/emstatic/EMStatic.html?rol=$+1+409+209+0+10+322+0.5+397%0Ae+1+2+100+127+165+245+284+0%0Ae+0+2+100+135+159+288+248+0%0Ae+0+2+100+285+187+315+195+0%0Ae+0+2+100+174+174+305+216+0%0Aw+0+2+100+221+271+309+194%0Aw+0+2+100+291+206+339+174%0Ae+0+2+100+199+182+319+191+0%0AE+1+2+100+88+104+265+284+107+124+255+271+0%0AE+1+2+100+121+123+184+185+133+135+171+173+0%0Ae+0+2+100+170+118+247+210+0%0Ae+0+2+100+106+184+180+261+0%0Ae+0+2+100+166+110+209+145+0%0Ae+0+2+100+100+154+144+222+0%0Ae+0+2+100+217+165+276+203+0%0A 600,600 noborder}} 
 </WRAP></WRAP> </WRAP></WRAP>
-<--+ 
 +#@HiddenEnd_HTML~1,Result~@# 
 + 
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
Zeile 903: Zeile 901:
  
 An ideal plate capacitor with a distance of $d_0 = 6 ~{ \rm mm}$ between the plates and with air as dielectric ($\varepsilon_0=1$) is charged to a voltage of $U_0 = 5~{ \rm kV}$.  An ideal plate capacitor with a distance of $d_0 = 6 ~{ \rm mm}$ between the plates and with air as dielectric ($\varepsilon_0=1$) is charged to a voltage of $U_0 = 5~{ \rm kV}$. 
-The source remains connected to the capacitor. In the air gap between the plates, a glass plate with $d_{ \rm g} = ~{ \rm mm}$ and $\varepsilon_{ \rm r} = 8$ is introduced parallel to the capacitor plates.+The source remains connected to the capacitor. In the air gap between the plates, a glass plate with $d_{ \rm g} = ~{ \rm mm}$ and $\varepsilon_{ \rm r} = 8$ is introduced parallel to the capacitor plates.
    
-  - Calculate the partial voltages on the glas $U_{ \rm g}$ and on the air gap $U_{ \rm a}$. +1. Calculate the partial voltages on the glas $U_{ \rm g}$ and on the air gap $U_{ \rm a}$.
-  - What would be the maximum allowed thickness of a glass plate, when the electric field in the air-gap shall not exceed $E_{ \rm max}=12~{ \rm kV/cm}$?+
  
-<button size="xs" type="link" collapse="Loesung_1_5_3_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_1_5_3_Tipps" collapsed="true">+#@HiddenBegin_HTML~1531T,Tipps~@#
   * build a formula for the sum of the voltages first    * build a formula for the sum of the voltages first 
   * How is the voltage related to the electric field of a capacitor?   * How is the voltage related to the electric field of a capacitor?
-</collapse>+#@HiddenEnd_HTML~1531T,Tipps~@#
  
-<button size="xs" type="link" collapse="Loesung_1_5_3_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_1_5_3_Endergebnis" collapsed="true"> +#@HiddenBegin_HTML~1531P,Path~@# 
-  - $U_{ \rm a} = 4~{ \rm kV}$, $U_{ \rm g} = 1 ~{ \rm kV}$  + 
-  - $d_{ \rm g} = 5.96~{ \rm mm}$ +The sum of the voltages across the glass and the air gap gives the total voltage $U_0$ and each individual voltage is given by the $E$-field in the individual material by $E {{U}\over{d}}$: 
-</collapse>+\begin{align*} 
 +U_0 &U_{\rm g}               + U_{\rm a} \\ 
 +    &E_{\rm g} \cdot d_{\rm g+ E_{\rm a\cdot d_{\rm a}  
 +\end{align*} 
 + 
 +The displacement field $D$ must be continuous across the different materials since it is only based on the charge $Q$ on the plates. 
 +\begin{align*} 
 +D_{\rm g}                                            &D_{\rm a} \\ 
 +\varepsilon_0 \varepsilon_{\rm r, g} \cdot E_{\rm g} &\varepsilon_0  \cdot E_{\rm a}  
 +\end{align*} 
 + 
 +Therefore, we can put $E_\rm a=  \varepsilon_{\rm r, g} \cdot E_\rm g $ into the formula of the total voltage and re-arrange to get $E_\rm g$: 
 +\begin{align*} 
 +U_0 &= E_{\rm g} \cdot d_{\rm g} + \varepsilon_{\rm r, g} \cdot E_{\rm g}  \cdot d_{\rm a} \\ 
 +    &= E_{\rm g} \cdot ( d_{\rm g} + \varepsilon_{\rm r, g} \cdot d_{\rm a}) \\ 
 + 
 +\rightarrow E_{\rm g}  &= {{U_0}\over{d_{\rm g} + \varepsilon_{\rm r, g} \cdot d_{\rm a}}}  
 +\end{align*} 
 + 
 +Since we know that the distance of the air gap is $d_{\rm a} = d_0 - d_{\rm a}$ we can calculate: 
 +\begin{align*} 
 +E_{\rm g}  &= {{5'000 ~\rm V}\over{0.004 ~{\rm m} + 8 \cdot 0.002 ~{\rm m}}} \\ 
 +         &= 250 ~\rm{{kV}\over{m}} 
 +\end{align*} 
 + 
 +By this, the individual voltages can be calculated: 
 +\begin{align*} 
 +U_{ \rm g} &= E_{\rm g} \cdot d_\rm g &&= 250 ~\rm{{kV}\over{m}} \cdot 0.004~\rm m &= 1 ~{\rm kV}\\ 
 +U_{ \rm a} &= U_0 - U_{ \rm g}      &&= 5  ~{\rm kV} - 1 ~{\rm kV}               &= 4 ~{\rm kV}\\ 
 + 
 +\end{align*} 
 +#@HiddenEnd_HTML~1531P,Path~@# 
 + 
 + 
 +#@HiddenBegin_HTML~1531R,Results~@# 
 +$U_{ \rm a} = 4~{ \rm kV}$, $U_{ \rm g} = 1 ~{ \rm kV}$  
 +#@HiddenEnd_HTML~1531R,Results~@# 
 + 
 + 
 +2. What would be the maximum allowed thickness of a glass plate, when the electric field in the air-gap shall not exceed $E_{ \rm max}=12~{ \rm kV/cm}$? 
 + 
 +#@HiddenBegin_HTML~1532P,Path~@# 
 +Again, we can start with the sum of the voltages across the glass and the air gap, such as the formula we got from the displacement field: $D = \varepsilon_0 \varepsilon_{\rm r, g} \cdot E_{\rm g} = \varepsilon_0  \cdot E_\rm a $. \\ 
 +Now we shall eliminate $E_\rm g$, since $E_\rm a$ is given in the question. 
 +\begin{align*} 
 +U_0 &  E_{\rm g}                               \cdot d_{\rm g} + E_{\rm a} \cdot d_{\rm a} \\ 
 +    &{{E_\rm a}\over{\varepsilon_{\rm r,g}}}   \cdot d_{\rm g} + E_{\rm a} \cdot d_{\rm a} \\ 
 +\end{align*} 
 + 
 +The distance $d_\rm a$ for the air is given by the overall distance $d_0$ and the distance for glass $d_\rm g$:  
 +\begin{align*} 
 +d_{\rm a} = d_0 - d_{\rm g} 
 +\end{align*} 
 + 
 +This results in: 
 +\begin{align*} 
 +U_0                      &= {{E_{\rm a}}\over{\varepsilon_{\rm r,g}}} \cdot d_{\rm g} + E_{\rm a} \cdot (d_0 - d_{\rm g}) \\ 
 +{{U_0}\over{E_{\rm a} }} &= {{1}\over{\varepsilon_{\rm r,g}}} \cdot d_{\rm g} + d_0 - d_{\rm g} \\ 
 +                         &= d_{\rm g} \cdot ({{1}\over{\varepsilon_{\rm r,g}}} - 1) + d_0 \\ 
 +d_{\rm g}                &= { { {{U_0}\over{E_{\rm a} }} - d_0 } \over { {{1}\over{\varepsilon_{\rm r,g}}} - 1 } }     &= { { d_0 - {{U_0}\over{E_{\rm a} }} } \over { 1 - {{1}\over{\varepsilon_{\rm r,g}}} } }                    
 +\end{align*} 
 + 
 +With the given values: 
 +\begin{align*} 
 +d_{\rm g}                &= { { 0.006 {~\rm m} - {{{~\rm kV} }\over{ 12 {~\rm kV/cm}}} } \over { 1 - {{1}\over{8}} } }    &= {  {{8}\over{7}} } \left( { 0.006 - {{5 }\over{ 1200}} }  \right)  {~\rm m}                    
 +\end{align*} 
 +#@HiddenEnd_HTML~1532P,Path~@# 
 + 
 + 
 +#@HiddenBegin_HTML~1532R,Results~@# 
 +$d_{ \rm g} = 2.10~{ \rm mm}$ 
 +#@HiddenEnd_HTML~1532R,Results~@#
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 1329: Zeile 1397:
 \end{align*} \end{align*}
 \begin{align*} \begin{align*}
-\boxed{ U_k = const}+\boxed{ U_k = {\rm const.}}
 \end{align*} \end{align*}
 </WRAP> </WRAP>
Zeile 1555: Zeile 1623:
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
 +<panel type="info" title="Exercise 1.9.2 Further capacitor charging/discharging practice Exercise "> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +{{youtube>a-gPuw6JsxQ}}
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 1.9.3 Further practice charging the capacitor"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +{{youtube>L0S_Aw8pBto}}
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 1.9.4 Charge balance of two capacitors"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +{{youtube>EMdpkDoMXXE}}
 +
 +</WRAP></WRAP></panel>
  
-<panel type="info" title="Task 1.9.Capacitor with glass plate"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Exercise 1.9.Capacitor with glass plate"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
 <WRAP> <WRAP>