Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
electrical_engineering_2:the_electrostatic_field [2024/07/01 11:39]
mexleadmin [Bearbeiten - Panel]
electrical_engineering_2:the_electrostatic_field [2024/07/01 13:08] (aktuell)
mexleadmin [Bearbeiten - Panel]
Zeile 914: Zeile 914:
 The sum of the voltages across the glass and the air gap gives the total voltage $U_0$ and each individual voltage is given by the $E$-field in the individual material by $E = {{U}\over{d}}$: The sum of the voltages across the glass and the air gap gives the total voltage $U_0$ and each individual voltage is given by the $E$-field in the individual material by $E = {{U}\over{d}}$:
 \begin{align*} \begin{align*}
-U_0 &= U_\rm g               + U_\rm a \\ +U_0 &= U_{\rm g              + U_{\rm a\\ 
-    &= E_\rm g \cdot d_\rm g + E_\rm a \cdot d_\rm a +    &= E_{\rm g\cdot d_{\rm g+ E_{\rm a\cdot d_{\rm a
 \end{align*} \end{align*}
  
 The displacement field $D$ must be continuous across the different materials since it is only based on the charge $Q$ on the plates. The displacement field $D$ must be continuous across the different materials since it is only based on the charge $Q$ on the plates.
 \begin{align*} \begin{align*}
-D_\rm g                                            &= D_\rm a \\ +D_{\rm g                                           &= D_{\rm a\\ 
-\varepsilon_0 \varepsilon_{\rm r, g} \cdot E_\rm g &= \varepsilon_0  \cdot E_\rm a \\ +\varepsilon_0 \varepsilon_{\rm r, g} \cdot E_{\rm g} &= \varepsilon_0  \cdot E_{\rm a
-\varepsilon_0 \varepsilon_{\rm r, g} \cdot E_\rm g &= \varepsilon_0  \cdot E_\rm a \\+
 \end{align*} \end{align*}
  
 Therefore, we can put $E_\rm a=  \varepsilon_{\rm r, g} \cdot E_\rm g $ into the formula of the total voltage and re-arrange to get $E_\rm g$: Therefore, we can put $E_\rm a=  \varepsilon_{\rm r, g} \cdot E_\rm g $ into the formula of the total voltage and re-arrange to get $E_\rm g$:
 \begin{align*} \begin{align*}
-U_0 &= E_\rm g \cdot d_\rm g + \varepsilon_{\rm r, g} \cdot E_\rm g  \cdot d_\rm a \\ +U_0 &= E_{\rm g\cdot d_{\rm g+ \varepsilon_{\rm r, g} \cdot E_{\rm g \cdot d_{\rm a\\ 
-    &= E_\rm g \cdot ( d_\rm g + \varepsilon_{\rm r, g} \cdot d_\rm a) \\+    &= E_{\rm g\cdot ( d_{\rm g+ \varepsilon_{\rm r, g} \cdot d_{\rm a}) \\
  
-\rightarrow E_\rm g  &= {{U_0}\over{d_\rm g + \varepsilon_{\rm r, g} \cdot d_\rm a}} +\rightarrow E_{\rm g &= {{U_0}\over{d_{\rm g+ \varepsilon_{\rm r, g} \cdot d_{\rm a}}} 
 \end{align*} \end{align*}
  
-Since we know that the distance of the air gap is $d_\rm a = d_0 - d_\rm a$ we can calculate:+Since we know that the distance of the air gap is $d_{\rm a= d_0 - d_{\rm a}$ we can calculate:
 \begin{align*} \begin{align*}
-E_\rm g  &= {{5'000 ~\rm V}\over{0.004 ~{\rm m} + 8 \cdot 0.002 ~{\rm m}}} \\+E_{\rm g &= {{5'000 ~\rm V}\over{0.004 ~{\rm m} + 8 \cdot 0.002 ~{\rm m}}} \\
          &= 250 ~\rm{{kV}\over{m}}          &= 250 ~\rm{{kV}\over{m}}
 \end{align*} \end{align*}
Zeile 941: Zeile 940:
 By this, the individual voltages can be calculated: By this, the individual voltages can be calculated:
 \begin{align*} \begin{align*}
-U_{ \rm g} &= E_\rm g \cdot d_\rm g &&= 250 ~\rm{{kV}\over{m}} \cdot 0.004~\rm m &= 1 ~{\rm kV}\\+U_{ \rm g} &= E_{\rm g\cdot d_\rm g &&= 250 ~\rm{{kV}\over{m}} \cdot 0.004~\rm m &= 1 ~{\rm kV}\\
 U_{ \rm a} &= U_0 - U_{ \rm g}      &&= 5  ~{\rm kV} - 1 ~{\rm kV}               &= 4 ~{\rm kV}\\ U_{ \rm a} &= U_0 - U_{ \rm g}      &&= 5  ~{\rm kV} - 1 ~{\rm kV}               &= 4 ~{\rm kV}\\
  
Zeile 954: Zeile 953:
  
 2. What would be the maximum allowed thickness of a glass plate, when the electric field in the air-gap shall not exceed $E_{ \rm max}=12~{ \rm kV/cm}$? 2. What would be the maximum allowed thickness of a glass plate, when the electric field in the air-gap shall not exceed $E_{ \rm max}=12~{ \rm kV/cm}$?
 +
 +#@HiddenBegin_HTML~1532P,Path~@#
 +Again, we can start with the sum of the voltages across the glass and the air gap, such as the formula we got from the displacement field: $D = \varepsilon_0 \varepsilon_{\rm r, g} \cdot E_{\rm g} = \varepsilon_0  \cdot E_\rm a $. \\
 +Now we shall eliminate $E_\rm g$, since $E_\rm a$ is given in the question.
 +\begin{align*}
 +U_0 &  E_{\rm g}                               \cdot d_{\rm g} + E_{\rm a} \cdot d_{\rm a} \\
 +    &= {{E_\rm a}\over{\varepsilon_{\rm r,g}}}   \cdot d_{\rm g} + E_{\rm a} \cdot d_{\rm a} \\
 +\end{align*}
 +
 +The distance $d_\rm a$ for the air is given by the overall distance $d_0$ and the distance for glass $d_\rm g$: 
 +\begin{align*}
 +d_{\rm a} = d_0 - d_{\rm g}
 +\end{align*}
 +
 +This results in:
 +\begin{align*}
 +U_0                      &= {{E_{\rm a}}\over{\varepsilon_{\rm r,g}}} \cdot d_{\rm g} + E_{\rm a} \cdot (d_0 - d_{\rm g}) \\
 +{{U_0}\over{E_{\rm a} }} &= {{1}\over{\varepsilon_{\rm r,g}}} \cdot d_{\rm g} + d_0 - d_{\rm g} \\
 +                         &= d_{\rm g} \cdot ({{1}\over{\varepsilon_{\rm r,g}}} - 1) + d_0 \\
 +d_{\rm g}                &= { { {{U_0}\over{E_{\rm a} }} - d_0 } \over { {{1}\over{\varepsilon_{\rm r,g}}} - 1 } }     &= { { d_0 - {{U_0}\over{E_{\rm a} }} } \over { 1 - {{1}\over{\varepsilon_{\rm r,g}}} } }                   
 +\end{align*}
 +
 +With the given values:
 +\begin{align*}
 +d_{\rm g}                &= { { 0.006 {~\rm m} - {{5 {~\rm kV} }\over{ 12 {~\rm kV/cm}}} } \over { 1 - {{1}\over{8}} } }    &= {  {{8}\over{7}} } \left( { 0.006 - {{5 }\over{ 1200}} }  \right)  {~\rm m}                   
 +\end{align*}
 +#@HiddenEnd_HTML~1532P,Path~@#
 +
  
 #@HiddenBegin_HTML~1532R,Results~@# #@HiddenBegin_HTML~1532R,Results~@#
-$d_{ \rm g} = 5.96~{ \rm mm}$+$d_{ \rm g} = 2.10~{ \rm mm}$
 #@HiddenEnd_HTML~1532R,Results~@# #@HiddenEnd_HTML~1532R,Results~@#