Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:the_electrostatic_field [2022/03/22 02:00]
tfischer
electrical_engineering_2:the_electrostatic_field [2024/03/19 03:19] (aktuell)
mexleadmin [Bearbeiten - Panel]
Zeile 1: Zeile 1:
-====== 1The Electrostatic Field ======+====== 1 The Electrostatic Field ======
  
 <callout> <callout>
-For this chapter the online Book 'University Physics II' is strongly recommended as reference. In detail this is+The online book 'University Physics II' is strongly recommended as reference for this chapterEspecially the following chapters
   * Chapter [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/05%3A_Electric_Charges_and_Fields|5. Electric Charges and Fields]]    * Chapter [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/05%3A_Electric_Charges_and_Fields|5. Electric Charges and Fields]] 
   * Chapter [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/06%3A_Gauss's_Law|6. Gauss's Law]]    * Chapter [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/06%3A_Gauss's_Law|6. Gauss's Law]] 
Zeile 9: Zeile 9:
 </callout> </callout>
  
-From everyday life it is known that there are different charges and effects of charge. <imgref ImgNr01> shows chargable body, which can be charged via charge separation between the sole of the foot and the floor. The movement of the foot creates a negative excess charge in the person, which is gradually distributed throughout the body. If a pointed part of the body (e.g. finger) is brought into the vicinity of a charge reservoir without excess charges, a current can flow even through the air. +Everyday life teaches us that there are various charges and charges' effects. The image <imgref ImgNr01> depicts chargeable body that can be charged through charge separation between the sole and the floor. The movement of the foot generates a negative surplus charge in the body, which progressively spreads throughout the body. A current can flow even through the air if a pointed portion of the body (e.g., a finger) is brought into close proximity to a charge reservoir with no extra charges.
 <WRAP> <WRAP>
 <imgcaption ImgNr01 | John Tra-Voltage > <imgcaption ImgNr01 | John Tra-Voltage >
-</imgcaption> <WRAP>.+</imgcaption> <WRAP>
 {{url>https://phet.colorado.edu/sims/html/john-travoltage/latest/john-travoltage_de.html 500,400 noborder}} {{url>https://phet.colorado.edu/sims/html/john-travoltage/latest/john-travoltage_de.html 500,400 noborder}}
 </WRAP> </WRAP>
  
-In the first chapter of the last semester we had already considered the charge as the central quantity of electricity and understood it as a multiple of the elementary charge. The mutual force action ([[electrical_engineering_1:preparation_properties_proportions#coulomb-force|the Coulomb-force]]) was already derived there. This is to be explained now more near.+We had already considered the charge as the central quantity of electricity in the first chapter of the previous semester and recognized it as a multiple of the elementary charge. There was already a mutual force action ([[electrical_engineering_1:preparation_properties_proportions#coulomb-force|the Coulomb-force]]) derived. This will be more fully explained.
  
-First, however, a differentiation of various terms: +First, we shall define certain terms: 
-  - **{{wp>Electricity}}** describes as an umbrella term all phenomena of moving and resting charges. \\ \\ +  - **{{wp>Electricity}}** is a catch-all term for any occurrences involving moving and resting charges.  
-  - **{{wp>Electrostatics}}** describes the phenomena of charges at rest and thus of electric fields which do not change in time. Thusthere is no time dependence of the electrical quantities. \\ Mathematically, ${{df}\over{dt}}=0$ holds for any function of the electric quantities\\ \\ +  - **{{wp>Electrostatics}}** is the study of charges at rest and consequently electric fields that do not vary over time. As a result, the electrical quantities have no temporal dependence. \\ For any function of the electric quantities ${{{\rm d}  f}\over{{\rm d} t}}=0$ holds mathematically.  
-  - **{{wp>Electrodynamics}}** describes the phenomena of moving charges. Thus electrodynamics includes both electric fields that change with time and magnetic fields. \\ For the present state of the course, the simple explanantion shall bethat magnetic fields are based on current or on a charge movement. \\ In electrodynamics, it is no longer valid for every function of the electric quantities, that the derivative is necessarily equal to zero\\ +  - **{{wp>Electrodynamics}}** describes the behavior of moving charges. Hence, electrodynamics covers both changing electric fields and magnetic fields. \\ For the time being, the simple explanation will be that magnetic fields are dependent on current or charge flow. \\ It is no longer true in electrodynamics that the derivative is always necessary for any function of electric values.
  
-At this chapter, only electrostatics are consideredThe magnetic fields are therefore excluded here for the time being+Only electrostatics is discussed in this chapter. For the time being, magnetic fields are thus excluded. 
-Also electrodynamics is not considered in this chapter and is introduced step by step in the following chapters.+Furthermore, electrodynamics is not covered in this chapter and is provided in further detail in subsequent chapters.
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 33: Zeile 32:
 <callout> <callout>
  
-=== Goals ===+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
  
   - know that an electric field is formed around a charge.   - know that an electric field is formed around a charge.
-  - be able to sketch the field lines of electric fields. +  - sketch the field lines of electric fields. 
-  - be able to represent the field vectors in a sketch when given several charges. +  - represent the field vectors in a sketch when given several charges. 
-  - be able to determine the resulting field vector by superimposing several field vectors using vector calculus. +  - determine the resulting field vector by superimposing several field vectors using vector calculus. 
-  - Be able to determine the force on a charge in an electrostatic field by applying Coulomb's law. Specifically:+  - determine the force on a charge in an electrostatic field by applying Coulomb's law. Specifically:
       - the force vector in coordinate representation       - the force vector in coordinate representation
       - the magnitude of the force vector       - the magnitude of the force vector
Zeile 52: Zeile 51:
 <panel type="info" title="educational Task "> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="educational Task "> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-The simulation in <imgref ImgNr02> was already briefly considered in the first chapter. Here, however, another point is to be dealt with.+The simulation in was already mentioned briefly in the first chapter. However, another issue must be addressed here.
  
-In the simulation, please position a negative charge $Q$ in the middle and deactivate electric field. The latter is done via the hook on the right. Now the situation is close to realitybecause a charge shows no effect at first sight.+Place a negative charge $Q$ in the middle of the simulation and turn off the electric field. The latter is accomplished by using the hook on the right. The situation is now close to reality because a charge appears to have no effect at first glance.
  
-For impact analysis, a sample charge $q$ is placed in the vicinity of the existing charge $Q$ (in the simulation, the sample charge is called "sensors"). It is observed that the charge $Q$ causes a force on the sample charge. This force can be determined with magnitude and direction at any point in space. The force acts in space in a similar way to gravity. The description of the state in space changed by the charge $Q$ is defined with the help of a field.+sample charge $q$ is placed near the existing charge $Q$ for impact analysis (in the simulation, the sample charge is called "sensors"). The charge $Q$ is observed to effect a force on the sample charge. At any point in space, the magnitude and direction of this force can be determined. In space, the force behaves similarly to gravity. A field serves to describe the condition space changed by the charge $Q$.
  
 <imgcaption ImgNr02 | setup for own experiments > <imgcaption ImgNr02 | setup for own experiments >
 </imgcaption>  </imgcaption> 
 {{url>https://phet.colorado.edu/sims/html/charges-and-fields/latest/charges-and-fields_de.html 500,400 noborder}} \\ {{url>https://phet.colorado.edu/sims/html/charges-and-fields/latest/charges-and-fields_de.html 500,400 noborder}} \\
-Take a charge ($+1nC$) and position it. \\ Measure the field across a sample charge (a sensor).+Take a charge ($+1~{ \rm nC}$) and position it. \\ Measure the field across a sample charge (a sensor).
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-The concept of a field shall now be briefly considered in a little more detail. +The concept of a field will now be briefly discussed in more detail. 
-  - The introduction of the field separates the cause from the effect. +  - The introduction of the field distinguishes the cause from the effect. 
-    - The charge $Q$ causes the field in space+    - The field in space is caused by the charge $Q$. 
-    - The charge $q$ in space feels a force as an effect of the field+    - As a result of the field, the charge $q$ in space feels a force. 
-    - This distinction becomes important again in this chapter. \\ Also in electrodynamics for high frequencies this distinction becomes clear: the field there corresponds to photons, i.e. to a transmission of effects with the finite (light)speed $c$. +    - This distinction is brought up again in this chapter. \\ It is also fairly obvious in electrodynamics at high frequencies: the field corresponds to photons, i.e. to a transmission of effects with finite (light)speed $c$. 
-  - As with physical quantities, there are different-dimensional fields: +  -There are different-dimensional fields, just like physical quantities
-    - In a **scalar field**, a single number is assigned to each point in space. \\ E.g. +    - In a **scalar field**, each point in space is assigned a single number. \\ For example,  
-      - temperature field $T(\vec{x})$ on the weather map or in an object +      - temperature field $T(\vec{x})$ on weather map or in an object  
-      - pressure field $p(\vec{x})$ +      - pressure field $p(\vec{x})$ 
-    - In a **vector field**, each point in space is assigned several numbers in the form of a vector. This reflects the action along the spatial coordinates. \\ For example. +    - Each point in space in a **vector field** is assigned several numbers in the form of a vector. This reflects the action as it occurs along the spatial coordinates. \\ As an example. 
-      - gravitational field $\vec{g}(\vec{x})$ pointing to the center of mass of the object.+      - gravitational field $\vec{g}(\vec{x})$ pointing to the object'center of mass.
       - electric field $\vec{E}(\vec{x})$       - electric field $\vec{E}(\vec{x})$
       - magnetic field $\vec{H}(\vec{x})$       - magnetic field $\vec{H}(\vec{x})$
-  - If each point in space is associated with a two- or more-dimensional physical quantity - that is, a tensor - then this field is called a tensor field. Tensor fields are relevant in mechanics (e.g., stress tensor) but are not necessary for electrical engineering. +  - A tensor field is one in which each point in space is associated with a two- or more-dimensional physical quantity - that is, a tensor. Tensor fields are useful in mechanics (for examplethe stress tensor)but they are not required in electrical engineering. 
-Vector fields can be stated as: +Vector fields are defined as follows:  
-  - Effects along spatial axes $x$,$y$ and $z$ (cartesian coordinate system).+  - Effects along spatial axes $x$, $y$ and $z$ (Cartesian coordinate system).
   - Effect in magnitude and direction vector (polar coordinate system)   - Effect in magnitude and direction vector (polar coordinate system)
  
Zeile 92: Zeile 91:
 ==== The Electric Field ==== ==== The Electric Field ====
  
-Thus, to determine the electric field, a measure of the magnitude and direction of the field is now neededFrom the first chapter of the last semester the Coulomb Force between two charges $Q_1$ and $Q_2$ is known:+To determine the electric field, a measurement of its magnitude and direction is now requiredThe Coulomb force between two charges $Q_1$ and $Q_2$ is known from the first chapter of the previous semester:
  
 \begin{align*} \begin{align*}
Zeile 98: Zeile 97:
 \end{align*} \end{align*}
  
-In order to obtain a measure of the magnitude of the electric field, the force on a (fictitious) sample charge $q$ is now considered.+The force on a (fictitious) sample charge $q$ is now considered to obtain a measure of the magnitude of the electric field.
  
 \begin{align*} \begin{align*}
Zeile 105: Zeile 104:
 \end{align*} \end{align*}
  
-The left part is therefore a measure of the magnitude of the field, i.e. independent of the size of the sample charge $q$. The magnitude of the electric field is thus given by+As a result, the left part is a measure of the magnitude of the field, independent of the size of the sample charge $q$. Thus, the magnitude of the electric field is given by
  
 <WRAP centeralign> <WRAP centeralign>
-$E = {{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1} \over {r^2}} \quad$ with $[E]={{[F]}\over{[q]}}=1 {{N}\over{As}}=1 {{N\cdot m}\over{As \cdot m}} = 1 {{V \cdot A \cdot s}\over{As \cdot m}} = 1 {{V}\over{m}}$+$E = {{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1} \over {r^2}} \quad$ with $[E]={{[F]}\over{[q]}}=1 ~\rm {N}\over{As}}=1 ~\rm {N\cdot m}\over{As \cdot m}} = 1 ~\rm {V \cdot A \cdot s}\over{As \cdot m}} = 1 ~\rm {V}\over{m}}$
 </WRAP> </WRAP>
  
Zeile 119: Zeile 118:
 <callout icon="fa fa-exclamation" color="red" title="Note:"> <callout icon="fa fa-exclamation" color="red" title="Note:">
  
-  - The test charge $q$ is always considered to be posi**__t__**ive (mnemonic: t = +). It is used only as a thought experiment and has no retroactive effect on the sampled charge $Q$.+  - The test charge $q$ is always considered to be posi**__t__**ive (mnemonic: t = +). It is only used as a thought experiment and has no retroactive effect on the sampled charge $Q$.
   - The sampled charge here is always a point charge.   - The sampled charge here is always a point charge.
 </callout> </callout>
Zeile 125: Zeile 124:
 <callout icon="fa fa-exclamation" color="red" title="Note:"> <callout icon="fa fa-exclamation" color="red" title="Note:">
  
-charge $Q$ generates an electric field $\vec{E}(Q)$ at a measuring point $P$. This electric field is given by+At a measuring point $P$, a charge $Q$ produces an electric field $\vec{E}(Q)$. This electric field is given by
   - the magnitude $|\vec{E}|=\Bigl| {{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1} \over {r^2}} \Bigl| $ and   - the magnitude $|\vec{E}|=\Bigl| {{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1} \over {r^2}} \Bigl| $ and
-  - the direction of the force $\vec{F_C}$ which a sample charge on the measurement point $P$ experiences. This direction is given by the unit vector $\vec{e_r}={{\vec{F_C}}\over{|F_C|}}$ in that direction. +  - the direction of the force $\vec{F_C}$ experienced by a sample charge on the measurement point $P$. This direction is indicated by the unit vector $\vec{e_{ \rm r}}={{\vec{F_C}}\over{|F_C|}}$ in that direction. 
-Be arware, that in English courses and literature $\vec{E}$ is simply called eletric field and the electric field strength is the magnitude $|\vec{E}|$. In German notation the //elektische Feldstärke// refers to $\vec{E}$ (magnitude and direction) and the //elektrische Feld// denotes the general presence of an electricstatic interaction (often without considering exact magnitude).+Be aware, that in English courses and literature $\vec{E}$ is simply referred to as the electric field and the electric field strength is the magnitude $|\vec{E}|$. In German notationthe //Elektrische Feldstärke// refers to $\vec{E}$ (magnitude and direction)and the //Elektrische Feld// denotes the general presence of an electrostatic interaction (often without considering exact magnitude).
 </callout> </callout>
  
 The direction of the electric field is switchable in <imgref ImgNr02> via the "Electric Field" option on the right. \\ The direction of the electric field is switchable in <imgref ImgNr02> via the "Electric Field" option on the right. \\
-The electric field can also be viewed again in [[https://www.youtube.com/watch?v=7k77nro5mAo|this video]].+The electric field can also be viewed again in [[https://www.youtube.com/watch?v=2GQTfpDE9DQ&ab_channel=KhanAcademy|this video]].
  
 ==== Electric Field Lines ==== ==== Electric Field Lines ====
  
  
-Electric field lines result as the (fictitious) path of a sample charge. Thus also electric field lines of several charges can be determined. +Electric field lines result from the (fictitious) path of a sample charge. Thus also electric field lines of several charges can be determined. 
 However, these also result from a superposition of the individual effects - i.e. electric field - at a measuring point $P$. However, these also result from a superposition of the individual effects - i.e. electric field - at a measuring point $P$.
  
-The superposition is sketched in <imgref ImgNr032>: Two charges $Q_1$ and $Q_2$ act on the test charge $q$ with the forces $F_1$ and $F_2$. Depending on the positionsand charges the forces vary and also the resulting force. The simulation also shows a single field line. +The superposition is sketched in <imgref ImgNr032>: Two charges $Q_1$ and $Q_2$ act on the test charge $q$ with the forces $F_1$ and $F_2$. Depending on the positions and chargesthe forces vary and so does the resulting force. The simulation also shows a single field line. 
  
 <WRAP> <WRAP>
 <imgcaption ImgNr032 | examples of field lines> <imgcaption ImgNr032 | examples of field lines>
 </imgcaption> <WRAP> </imgcaption> <WRAP>
-{{url>https://www.geogebra.org/material/iframe/id/qIXZJKqj/width/500/height/500/border/888888/rc/false/ai/false/sdz/false/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5 500,500 noborder}}+{{url>https://www.geogebra.org/material/iframe/id/qIXZJKqj/width/500/height/500/border/888888/rc/false/ai/false/sdz/false/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5 600,400 noborder}}
 </WRAP></WRAP> </WRAP></WRAP>
  
-For a full picture of the field lines between charges, one has to start with a single charge. The in- and outgoing lines on this charge are drawn in equidistance on the charge. This is also true for the situation with multiple charges. However there, the lines are not necessarily run radialy anymore. The test charge is influenced by all the single charges, and therefore the field lines can get bend+For a full picture of the field lines between charges, one has to start with a single charge. The in- and outgoing lines on this charge are drawn in equidistance on the charge. This is also true for the situation with multiple charges. However there, the lines are not necessarily run radially anymore. The test charge is influenced by all the single charges, and therefore the field lines can get bent
  
 <WRAP> <WRAP>
Zeile 163: Zeile 162:
     * ... delete components with a right click onto it and ''delete''     * ... delete components with a right click onto it and ''delete''
   * Where is the density of the field lines higher?    * Where is the density of the field lines higher? 
-  * How does the field between two positive charges look like? How between two different charges?+  * How does the field between two positive charges look like? How does it look between two different charges?
  
 <WRAP> <WRAP>
Zeile 174: Zeile 173:
   - The electrostatic field is a source field. This means there are sources and sinks.    - The electrostatic field is a source field. This means there are sources and sinks. 
   - From the field line diagrams, the following can be obtained:   - From the field line diagrams, the following can be obtained:
-    - Direction of the field ($\hat{=}$ tangent to the field line).+    - Direction of the field ($\hat{=}$ parallel to the field line).
     - Magnitude of the field ($\hat{=}$ number of field lines per unit area).     - Magnitude of the field ($\hat{=}$ number of field lines per unit area).
   - The magnitude of the field along a field line is usually __not__ constant.   - The magnitude of the field along a field line is usually __not__ constant.
Zeile 183: Zeile 182:
   * The electric field lines have a beginning (at a positive charge) and an end (at a negative charge).   * The electric field lines have a beginning (at a positive charge) and an end (at a negative charge).
   * The direction of the field lines represents the direction of a force onto a positive test charge.   * The direction of the field lines represents the direction of a force onto a positive test charge.
-  * There are no closed field lines in electrostatic fields. The reason for this can be explained considering the energy of the moved particle (see later subchapters).+  * There are no closed field lines in electrostatic fields. The reason for this can be explained by considering the energy of the moved particle (see later subchapters).
   * Electric field lines cannot cut each other: This is based on the fact that the direction of the force at a cutting point would not be unique.   * Electric field lines cannot cut each other: This is based on the fact that the direction of the force at a cutting point would not be unique.
   * The field lines are always perpendicular to conducting surfaces. This is also based on energy considerations; more details later.   * The field lines are always perpendicular to conducting surfaces. This is also based on energy considerations; more details later.
-  * The inside of a conducting component is always field free. Also this will be discussed in the following.+  * The inside of a conducting component is always field free. Alsothis will be discussed in the following.
  
 </callout> </callout>
Zeile 199: Zeile 198:
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-<panel type="info" title="Task 1.1.Field lines"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Task 1.1.Field lines"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
 Sketch the field line plot for the charge configurations given in <imgref ImgNr04>. \\ Sketch the field line plot for the charge configurations given in <imgref ImgNr04>. \\
Zeile 211: Zeile 210:
 <imgcaption ImgNr04| Task on field lines> <imgcaption ImgNr04| Task on field lines>
 </imgcaption> <WRAP> </imgcaption> <WRAP>
-{{drawio>TaskOnFieldLines}} \\+{{drawio>TaskOnFieldLines.svg}} \\
 </WRAP> </WRAP>
  
Zeile 218: Zeile 217:
  
  
-===== 1.2 Electric charge and Coulomb force (reloaded) =====+===== 1.2 Electric Charge and Coulomb Force (reloaded) =====
  
 <callout> <callout>
  
-=== Goals ===+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
  
-  - be able to determine the direction of the forces using given charges. +  - determine the direction of the forces using given charges. 
-  - be able to represent the acting force vectors in a sketch. +  - represent the acting force vectors in a sketch. 
-  - be able to determine a force vector by superimposing several force vectors using vector calculus. +  - determine a force vector by superimposing several force vectors using vector calculus. 
-  - be able to state the following quantities for a force vector: +  - state the following quantities for a force vector: 
-      - Force vector in coordinate representation +      - the force vector in coordinate representation 
-      - magnitude of the force vector +      - the magnitude of the force vector 
-      - Angle of the force vector+      - the angle of the force vector
  
 </callout> </callout>
  
-The electric charge and Coulomb force has already been described in last semester. However, some points are to be caught up here to it.+The electric charge and Coulomb force have already been described last semester. However, some points are to be caught up here to it.
  
 ==== Direction of the Coulomb force and Superposition ==== ==== Direction of the Coulomb force and Superposition ====
  
-In the case of the force, only the direction has been considered so far, e.g. direction towards the sample charge. For future explanations it is important to include the cause-effect in the naming. This is donw by giving the correct labeling the subsript of the force. In <imgref ImgNr06> (a) and (b) the convention is shown: A force $\vec{F}_{21}$ acts on charge $Q_2$ and is caused by charge $Q_1$. As a mnemonic you can remember "tip-to-tail" (first the effect, then the cause).+In the case of the force, only the direction has been considered so far, e.g. direction towards the sample charge. For future explanationsit is important to include the cause-effect in the naming. This is done by giving the correct labeling of the subscript of the force. In <imgref ImgNr06> (a) and (b) the convention is shown: A force $\vec{F}_{21}$ acts on charge $Q_2$ and is caused by charge $Q_1$. As a mnemonicyou can remember "tip-to-tail" (first the effect, then the cause).
  
-Furthermore, several forces on a charge can be superimposed to a resulting force. \\+Furthermore, several forces on a charge can be superimposed resulting in a single, equivalent force. \\
 Strictly speaking, it must hold that $\varepsilon$ is constant in the structure. For example, the resultant force in <imgref ImgNr06> Fig. (c) on $Q_3$ becomes equal to: $\vec{F_3}= \vec{F_{31}}+\vec{F_{32}}$. Strictly speaking, it must hold that $\varepsilon$ is constant in the structure. For example, the resultant force in <imgref ImgNr06> Fig. (c) on $Q_3$ becomes equal to: $\vec{F_3}= \vec{F_{31}}+\vec{F_{32}}$.
  
Zeile 248: Zeile 247:
 <imgcaption ImgNr06 | direction of coulomb force> <imgcaption ImgNr06 | direction of coulomb force>
 </imgcaption> <WRAP>. </imgcaption> <WRAP>.
-{{drawio>DirectionOfCoulombforce}} \\+{{drawio>DirectionOfCoulombforce.svg}} \\
 </WRAP> </WRAP>
  
Zeile 254: Zeile 253:
 ==== Geometric Distribution of Charges ==== ==== Geometric Distribution of Charges ====
  
-In previous chapters only single charges (e.g. $Q_1$, $Q_2$) were considered.  +In previous chaptersonly single charges (e.g. $Q_1$, $Q_2$) were considered.  
   * The charge $Q$ was previously reduced to a **point charge**. \\ This can be used, for example, for the elementary charge or for extended charged objects from a large distance. The distance is sufficiently large if the ratio between the largest object extent and the distance to the measurement point $P$ is small.   * The charge $Q$ was previously reduced to a **point charge**. \\ This can be used, for example, for the elementary charge or for extended charged objects from a large distance. The distance is sufficiently large if the ratio between the largest object extent and the distance to the measurement point $P$ is small.
-  * If the charges are lined up along a line, this is called a **line charge**. \\ Examples of this are a straight trace on a circuit board or a piece of wire. Furthermore, this also applies to an extended charged object, which has exactly an extension that is no longer small in relation to the distance. For this purpose, the charge $Q$ is considered to be distributed over the line. Thus, a (line) charge density $\rho_l$ can be determined: <WRAP centeralign>$\rho_l = {{Q}\over{l}}$</WRAP> or, in the case of different charge densities on subsections: <WRAP centeralign>$\rho_l = {{\Delta Q}\over{\Delta l}} \rightarrow \rho_l(l)={{d}\over{dl}} Q(l)$</WRAP> +  * If the charges are lined up along a line, this is referred to as a **line charge**. \\ Examples of this are a straight trace on a circuit board or a piece of wire. Furthermore, this also applies to an extended charged object, which has exactly an extension that is no longer small in relation to the distance. For this purpose, the charge $Q$ is considered to be distributed over the line. Thus, a (line) charge density $\rho_l$ can be determined: <WRAP centeralign>$\rho_l = {{Q}\over{l}}$</WRAP> or, in the case of different charge densities on subsections: <WRAP centeralign>$\rho_l = {{\Delta Q}\over{\Delta l}} \rightarrow \rho_l(l)={{\rm d}\over{{\rm d}l}} Q(l)$</WRAP> 
-  * It is spoken of an **area charge** when the charge distributed over an area. \\ Examples of this are the floor or a plate of a capacitor. Again, an extended charged object can be considered if there are two extensions which are no longer small in relation to the distance (e.g. surface of the earth). Again, a (surface) charge density $\rho_A$ can be determined: <WRAP centeralign>$\rho_A = {{Q}\over{A}}$</WRAP> or if there are different charge densities on partial surfaces: <WRAP centeralign>$\rho_A = {{\Delta Q}\over{\Delta A}} \rightarrow \rho_A(A) ={{d}\over{dA}} Q(A)={{d}\over{dx}}{{d}\over{dy}} Q(A)$</WRAP> +  * It is spoken of as an **area charge** when the charge is distributed over an area. \\ Examples of this are the floor or a plate of a capacitor. Again, an extended charged object can be considered when two dimensions are no longer small in relation to the distance (e.g. surface of the earth). Again, a (surface) charge density $\rho_A$ can be determined: <WRAP centeralign>$\rho_A = {{Q}\over{A}}$</WRAP> or if there are different charge densities on partial surfaces: <WRAP centeralign>$\rho_A = {{\Delta Q}\over{\Delta A}} \rightarrow \rho_A(A) ={{\rm d}\over{{\rm d}A}} Q(A)={{\rm d}\over{{\rm d}x}}{{\rm d}\over{{\rm d}y}} Q(A)$</WRAP> 
-  * Finally, a **space charge** is the term for charges that span a volume. \\ Here examples are plasmas or charges in extended objects (e.g. the doped volumes in a semiconductor). As with the other charge distributions, a (space) charge density $\rho_V$ can be calculated here: <WRAP centeralign>$\rho_V = {{Q}\over{V}}$</WRAP> or for different charge density in partial volumes: <WRAP centeralign>$\rho_V = {{\Delta Q}\over{\Delta V}} \rightarrow \rho_V(V) ={{d}\over{dV}} Q(V)={{d}\over{dx}}{{d}\over{dy}}{{d}\over{dz}} Q(V)$</WRAP>+  * Finally, a **space charge** is the term for charges that span a volume. \\ Here examples are plasmas or charges in extended objects (e.g. the doped volumes in a semiconductor). As with the other charge distributions, a (space) charge density $\rho_V$ can be calculated here: <WRAP centeralign>$\rho_V = {{Q}\over{V}}$</WRAP> or for different charge density in partial volumes: <WRAP centeralign>$\rho_V = {{\Delta Q}\over{\Delta V}} \rightarrow \rho_V(V) ={{\rm d}\over{{\rm d}V}} Q(V)={{\rm d}\over{{\rm d}x}}{{\rm d}\over{{\rm d}y}}{{\rm d}\over{{\rm d}z}} Q(V)$</WRAP>
  
 In the following, area charges and their interactions will be considered. In the following, area charges and their interactions will be considered.
  
-<WRAP> <imgcaption ImgNr05 | Field lines of various extended charged objects></imgcaption> \\ {{youtube>9fVEpwtrKhQ}} \\ </WRAP>+<WRAP> <imgcaption ImgNr05 | Field lines of various extended charged objects></imgcaption> \\ {{youtube>LB8Rhcb4eQM}} \\ </WRAP>
  
 ==== Types of Fields depending on the Charge Distribution ==== ==== Types of Fields depending on the Charge Distribution ====
Zeile 269: Zeile 268:
  
 <WRAP group><WRAP column half> <WRAP group><WRAP column half>
-In **homogeneous fields**, magnitude and direction are constant throughout the field range. This field form is idealized to exist within plate capacitors. e.g., in the plate capacitor (<imgref ImgNr07>), or in the vicinity of widely extended bodies.+In **homogeneous fields**, magnitude and direction are constant throughout the field range.  
 +This field form is idealized to exist within plate capacitors. e.g., in the plate capacitor (<imgref ImgNr07>), or the vicinity of widely extended bodies.
  
 <WRAP> <WRAP>
 <imgcaption ImgNr07 | Field lines of a homogeneous field> <imgcaption ImgNr07 | Field lines of a homogeneous field>
 </imgcaption> \\ </imgcaption> \\
-{{drawio>FieldLinesOfAHomogeneousField}} \\+{{drawio>FieldLinesOfAHomogeneousField.svg}} \\
 </WRAP> </WRAP>
  
 </WRAP><WRAP column half> </WRAP><WRAP column half>
  
-For **inhomogeneous fields**, the magnitude and/or direction of the electic field changes from place to place. This is the rule in real systems, even the field of a point charge is inhomogeneous (<imgref ImgNr08>).  +For **inhomogeneous fields**, the magnitude and/or direction of the electric field changes from place to place.  
 +This is the rule in real systems, even the field of a point charge is inhomogeneous (<imgref ImgNr08>).  
  
 <WRAP> <WRAP>
 <imgcaption ImgNr08 | Field lines of an inhomogeneous field> <imgcaption ImgNr08 | Field lines of an inhomogeneous field>
 </imgcaption> \\ </imgcaption> \\
-{{drawio>FieldLinesOfAnInhomogeneousField}} \\+{{drawio>FieldLinesOfAnInhomogeneousField.svg}} \\
 </WRAP> </WRAP>
  
Zeile 299: Zeile 300:
 {{youtube>QWOwK-zyEnE}} {{youtube>QWOwK-zyEnE}}
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
 +
 +{{page>task_1.1.3_with_calc&nofooter}}
 +{{page>task_1.1.4&nofooter}}
 +{{page>task_1.1.5&nofooter}}
 +
  
 =====1.3 Work and Potential ===== =====1.3 Work and Potential =====
Zeile 304: Zeile 310:
 <callout> <callout>
  
-=== Goals ===+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
  
   - know how work is defined in the electrostatic field.   - know how work is defined in the electrostatic field.
-  - be able to describe when work has to be performed and when it does not in the situation of a moving .+  - describe when work has to be performed and when it does not in the situation of a movement.
   - know the definition of electric voltage and be able to calculate it in an electric field.   - know the definition of electric voltage and be able to calculate it in an electric field.
   - understand why the calculation of voltage is independent of displacement.   - understand why the calculation of voltage is independent of displacement.
-  - know what a potential difference is and recognise or be able to state equipotential surfaces (lines). +  - know what a potential difference is and recognize or be able to state equipotential surfaces (lines). 
-  - be able to determine a potential curve for a given arrangement.+  - determine a potential curve for a given arrangement.
  
 </callout> </callout>
Zeile 320: Zeile 326:
  
 In the following, only a few brief illustrations of the concepts are given. \\ In the following, only a few brief illustrations of the concepts are given. \\
-A detailed explanation can be found in the online Book 'University Physics II'. It is recommended to work through this independently. \\ \\+A detailed explanation can be found in the online book 'University Physics II'. It is recommended to work through this independently. \\ \\
 In particular, this applies to: In particular, this applies to:
   * Chapter "[[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/07%3A_Electric_Potential|7. electric potential]]"   * Chapter "[[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/07%3A_Electric_Potential|7. electric potential]]"
 </callout> </callout>
  
-==== Energy required to Displace a Charge in the electic Field ====+==== Energy required to Displace a Charge in the electric Field ====
  
 First, the situation of a charge in a homogeneous electric field shall be considered. As we have seen so far, the magnitude of $E$ is constant and the field lines are parallel. Now a positive charge $q$ is to be brought into this field. First, the situation of a charge in a homogeneous electric field shall be considered. As we have seen so far, the magnitude of $E$ is constant and the field lines are parallel. Now a positive charge $q$ is to be brought into this field.
  
-If this charge would be free movable (e.g. electron in vacuum or in extended conductor) it would be accelerated along field lines. Thus its kinetic energy increases. Because the whole system of plates (for field generation) and charge however does not change its energetic state - thermodynamically the system is closed. From this follows: if the kinetic energy increases, the potential energy must decrease.+If this charge would be free movable (e.g. electron in vacuum or an extended conductor) it would be accelerated along field lines. Thus its kinetic energy increases. Because the whole system of plates (for field generation) and charge however does not change its energetic state - thermodynamically the system is closed. From this follows: if the kinetic energy increases, the potential energy must decrease.
  
 <WRAP> <WRAP>
 <imgcaption ImgNr09 | Observation of work in a homogeneous electric field> <imgcaption ImgNr09 | Observation of work in a homogeneous electric field>
 </imgcaption> </imgcaption>
-{{drawio>WorkInHomField}}+{{drawio>WorkInHomField.svg}}
 <WRAP> <WRAP>
  
-It is known from mechanics, that the work done (thus energy needed) is defined by force one needs to move along a path. \\ +It is known from mechanics, that the work done (thus energy needed) is defined by the force one needs to move along a path. \\ 
-In a homogeneous field, the following holds for a force producing motion along a field line from $A$ to $B$ (see <imgref ImgNr09>):+In a homogeneous field, the following holds for a force-producing motion along a field line from ${ \rm A}$ to ${ \rm B}$ (see <imgref ImgNr09>):
 \begin{align*} \begin{align*}
-W_{AB} = F_C \cdot s+W_{ \rm AB} = F_C \cdot s
 \end{align*} \end{align*}
  
-For a motion perpendicular to the field lines (i.e. from $A$ to $C$) no work is needed - so $W_{AC}=0$ results - because the formula above is only true for $F_C$ parallel to $s$. The motion perpendicular to the field lines is similar to the movement of weight in the gravitational field at the same height. Or more illustrative: It is similar to walk at the same floor of a house. There, too, no energy is released or absorbed with regard to the field. +For a motion perpendicular to the field lines (i.e. from ${ \rm A}$ to ${ \rm C}$) no work is needed - so $W_{ \rm AC}=0$ results - because the formula above is only true for $F_C$ parallel to $s$. The motion perpendicular to the field lines is similar to the movement of weight in the gravitational field at the same height. Or more illustrative: It is similar to walking on the same floor of a house. There, too, no energy is released or absorbed concerning the field. 
-For any direction through the field the part of the path has to be considered, which is parallel to the field lines. This results from the angle $\alpha$ between $\vec{F}$ and $\vec{s}$:+For any direction through the fieldthe part of the path has to be considered, which is parallel to the field lines. This results from the angle $\alpha$ between $\vec{F}$ and $\vec{s}$:
 \begin{align*} \begin{align*}
-W_{AB} = F_C \cdot s \cdot cos(\alpha) = \vec{F_C}\cdot \vec{s}+W_{\rm AB} = F_C \cdot s \cdot \cos(\alpha) = \vec{F_C}\cdot \vec{s}
 \end{align*} \end{align*}
  
-The work $W_{AB}$ here describes the energy difference experienced by the charge $q$. \\ +The work $W_{ \rm AB}$ here describes the energy difference experienced by the charge $q$. \\ 
-Similar to the electric field, we now look for a quantity that is independent of the (sample) charge $q$ in order to describe the energy component. This is done by the **voltage** $U$. The voltage of a movement from $A$ to $B$ in a homogeneous field is defined as:+Similar to the electric field, we now look for a quantity that is independent of the (sample) charge $q$ to describe the energy component. This is done by the **voltage** $U$. The voltage of a movement from $A$ to $B$ in a homogeneous field is defined as:
  
 \begin{align} \begin{align}
-U_{AB} = {{W_{AB}}\over{q}} = {{F_C \cdot s}\over{q}} = {{E \cdot q \cdot s}\over{q}} = E \cdot s_{AB}+U_{ \rm AB} = {{W_{ \rm AB}}\over{q}} = {{F_C \cdot s}\over{q}} = {{E \cdot q \cdot s}\over{q}} = E \cdot s_{ \rm AB}
 \end{align} \end{align}
  
 <callout icon="fa fa-exclamation" color="red" title="Note:"> <callout icon="fa fa-exclamation" color="red" title="Note:">
-  - The voltage $U_{AB}$ represents the work $W$ per charge needed to move a probe charge from point $A$ to point {B} in an $E$-field. +  - The voltage $U_{ \rm AB}$ represents the work $W$ per charge needed to move a probe charge from point $A$ to point {B} in an $E$-field. 
-  - The voltage is measured in Volts: $[U] = 1V$+  - The voltage is measured in Volts: $[U] = 1~{ \rm V}$
 </callout> </callout>
  
-To obtain a general approach to __in__homogeneous fields and arbitrary paths $s_{AB}$, it helps (as is so often the case) to decompose the problem into small parts. In the concrete case, these are small path segments on which the field can be assumed to be homogeneous. These are to be assumed to be infinitesimally small in the extreme case (i.e., from $s$ to $\Delta s$ to $ds$):+To obtain a general approach to __in__homogeneous fields and arbitrary paths $s_{ \rm AB}$, it helps (as is so often the case) to decompose the problem into small parts.  
 +In the concrete case, these are small path segments on which the field can be assumed to be homogeneous.  
 +These are to be assumed to be infinitesimally small in the extreme case (i.e., from $s$ to $\Delta s$ to $ds$):
  
 \begin{align} \begin{align}
-W_{AB} = \vec{F_C}\cdot \vec{s} \quad \rightarrow \quad \Delta W = \vec{F_C}\cdot \Delta \vec{s}\quad \rightarrow \quad dW = \vec{F_C}\cdot d \vec{s}+W_{ \rm AB} = \vec{F_C}\cdot \vec{s} \quad \rightarrow \quad \Delta W = \vec{F_C}\cdot \Delta \vec{s}\quad \rightarrow \quad {\rm d}W = \vec{F_C}\cdot {\rm d\vec{s}
 \end{align} \end{align}
  
Zeile 370: Zeile 378:
  
 \begin{align*} \begin{align*}
-W_{AB} &= \int_{W_A}^{W_BdW +W_{ \rm AB} &= \int_{W_{ \rm A}}^{W_{ \rm B}} {\rm d} W 
-      &= \int_{A}^{B} \vec{F_C}\cdot d \vec{s} \\ +      &= \int_{ \rm A}^{ \rm B} \vec{F_C}\cdot {\rm d\vec{s} \\ 
-      &= \int_{A}^{B} q \cdot \vec{E} \cdot d \vec{s}  \\ +      &= \int_{ \rm A}^{ \rm B} q \cdot \vec{E} \cdot {\rm d\vec{s}  \\ 
-      &= q \cdot \int_{A}^{B} \vec{E} \cdot d \vec{s}+      &= q \cdot \int_{ \rm A}^{ \rm B} \vec{E} \cdot {\rm d\vec{s}
 \end{align*} \end{align*}
  
Zeile 379: Zeile 387:
  
 \begin{align*} \begin{align*}
-U_{AB} & {{W_{AB}}\over{q}} +U_{ \rm AB} & {{W_{ \rm AB}}\over{q}} 
-      &= \int_{A}^{B} \vec{E} \cdot d \vec{s}+      &= \int_{ \rm A}^{ \rm B} \vec{E} \cdot {\rm d\vec{s}
 \end{align*} \end{align*}
  
-Interestingly, it does not matter which way the integration takes place. So, it doesn't matter how the charge gets from $A$ to $B$: the energy needed and the voltage is always the same. This follows from the fact that a charge $q$ at a point $A$ in the field has a unique potential energy. No matter how this charge is moved to a point $B$ and back again: as soon as it gets back to the point $A$, it has the same energy again. So the voltage of the way there and back must be equal in magnitude.+Interestingly, it does not matter which way the integration takes place. So, it doesn't matter how the charge gets from ${ \rm A}$ to ${ \rm B}$: the energy needed and the voltage are always the same.  
 +This follows from the fact that a charge $q$ at a point ${ \rm A}$ in the field has a unique potential energy.  
 +No matter how this charge is moved to a point ${ \rm B}$ and back again: as soon as it gets back to point ${ \rm A}$, it has the same energy again.  
 +So the voltage of the way there and back must be equal in magnitude.
  
 <WRAP> <WRAP>
-<imgcaption ImgNr09b | different Pathes in a field>+<imgcaption ImgNr09b | different Paths in a Field>
 </imgcaption> </imgcaption>
-{{drawio>PathesInHomField}}+{{drawio>PathesInHomField.svg}}
 <WRAP> <WRAP>
  
-This independency of the taken path leads for the closed path in <imgref ImgNr09b> from $A$ to $B$ and back to:+This independency of the taken path leads to the closed path in <imgref ImgNr09b> from ${ \rm A}$ to ${ \rm B}$ and back to:
  
 \begin{align*} \begin{align*}
-\sum W &= W_{AB} &+ W_{BA} \\ +\sum W &= W_{ \rm AB} &+ W_{ \rm BA} \\ 
-       &= q \cdot U_{AB} &+ q \cdot U_{BA} \\ +       &= q \cdot U_{ \rm AB} &+ q \cdot U_{ \rm BA} \\ 
-       &= q \cdot (U_{AB} + U_{BA} ) = 0+       &= q \cdot (U_{ \rm AB} + U_{ \rm BA} ) = 0
 \end{align*} \end{align*}
  
Zeile 402: Zeile 413:
  
 \begin{align*} \begin{align*}
-U_{AB} + U_{BA} &= 0 \\ +U_{ \rm AB} + U_{ \rm BA} &= 0 \\ 
-\int_{A}^{B} \vec{E} \cdot d \vec{s} + \int_{B}^{A} \vec{E} \cdot d \vec{s} &= 0 \\+\int_{ \rm A}^{ \rm B} \vec{E} \cdot {\rm d\vec{s} + \int_{ \rm B}^{ \rm A} \vec{E} \cdot {\rm d\vec{s} &= 0 \\
  
-\rightarrow \boxed{ \oint \vec{E} \cdot d \vec{s} = 0}+\rightarrow \boxed{ \oint \vec{E} \cdot {\rm d\vec{s} = 0}
 \end{align*} \end{align*}
  
Zeile 411: Zeile 422:
  
 <callout icon="fa fa-exclamation" color="red" title="Note:"> <callout icon="fa fa-exclamation" color="red" title="Note:">
-  - Returning to the starting point from any point $A$ after a closed circuit, the __circuit voltage__ along the closed path is 0. \\ A closed path is mathematically expressed as a ring integral: \begin{align} U = \oint \vec{E} \cdot d \vec{s} = 0 \end{align}+  - Returning to the starting point from any point $A$ after a closed circuit, the __circuit voltage__ along the closed path is 0. \\ A closed path is mathematically expressed as a ring integral: \begin{align} U = \oint \vec{E} \cdot {\rm d\vec{s} = 0 \end{align}
   - Or spoken differently: In the electrostatic field there are no self-contained field lines.   - Or spoken differently: In the electrostatic field there are no self-contained field lines.
-  - A field $\vec{X}$ which satisfies the condition $\oint \vec{X} \cdot d \vec{s}=0$ is called __vortex-free__ or __potential field__. \\ From the potential difference, or the voltage, the work in the electrostatic field results with: \begin{align*} \boxed{W_{AB}= q \cdot U_{AB}} \end{align*}+  - A field $\vec{X}$ which satisfies the condition $\oint \vec{X} \cdot {\rm d\vec{s}=0$ is referred to as __vortex-free__ or __potential field__. \\ From the potential difference, or the voltage, the work in the electrostatic field results as: \begin{align*} \boxed{W_{ \rm AB}= q \cdot U_{ \rm AB}} \end{align*}
 </callout> </callout>
  
Zeile 424: Zeile 435:
 </WRAP> </WRAP>
  
-In the previous subchapter the term voltage got a more general meaning. This shall be now applied to investigate the electic field a bit more. Once a charge $q$ moves perpendicular to the field lines, it experiences neither energy gain nor loss. The voltage along this path is $0V$. All points where the voltage of $0V$ is applied are at the same potential level. The connection of these points is called:+In the previous subchapterthe term voltage got a more general meaning.  
 +This shall be now applied to investigate the electric field a bit more.  
 +Once a charge $q$ moves perpendicular to the field lines, it experiences neither energy gain nor loss.  
 +The voltage along this path is $0~{ \rm V}$. All points where the voltage of $0~{ \rm V}$ is applied are at the same potential level.  
 +The connection of these points are referred to as:
   * equipotential lines for a 2-dimensional representation of the field.   * equipotential lines for a 2-dimensional representation of the field.
   * equipotential surfaces for a 3-dimensional field   * equipotential surfaces for a 3-dimensional field
Zeile 431: Zeile 446:
  
 In <imgref ImgNr98>, the equipotential lines of a point charge are shown. In <imgref ImgNr98>, the equipotential lines of a point charge are shown.
-  * The equipotential surfaces are drawn with a fixed step size, e.g. $1V$, $2V$, $3V$, ... . +  * The equipotential surfaces are drawn with a fixed step size, e.g. $1~{ \rm V}$, $2~{ \rm V}$, $3~{ \rm V}$, ... . 
   * Since the electric field is higher near charges, equipotential surfaces are also closer together there.   * Since the electric field is higher near charges, equipotential surfaces are also closer together there.
-  * The angle between the field vectors (and therefore the field lines) and the equipotential lines is always 90° +  * The angle between the field vectors (and therefore the field lines) and the equipotential lines is always $90°
  
 <WRAP> <WRAP>
Zeile 446: Zeile 461:
  
 So up to now, the voltage was investigated and also equipotential areas were found. But what is this potential anyway? So up to now, the voltage was investigated and also equipotential areas were found. But what is this potential anyway?
-Since the voltage is independence of path, one can conclude that the path integral can always be expressed as the difference of two scalar values:+Since the voltage is independent of the path, one can conclude that the path integral can always be expressed as the difference between two scalar values:
  
 \begin{align*} \begin{align*}
-U_{AB} &= \int_{A}^{B} \vec{E} \cdot d \vec{s} \\ +U_{ \rm AB} &= \int_{ \rm A}^{ \rm B} \vec{E} \cdot {\rm d\vec{s} \\ 
-       &= \varphi_A - \varphi_B+       &= \varphi_{ \rm A} - \varphi_{ \rm B}
 \end{align*} \end{align*}
  
Zeile 456: Zeile 471:
 <imgcaption ImgNr10b | electric Potential> <imgcaption ImgNr10b | electric Potential>
 </imgcaption> </imgcaption>
-{{drawio>potentialAndField}}+{{drawio>potentialAndField.svg}}
 <WRAP> <WRAP>
  
 Here, the **electric potential** $\varphi$ is introduced as the scalar local function of the electric field (see <imgref ImgNr10b>). This means: any point in space can either be connected to the two-dimensional value $\vec{E}$ or the one-dimensional value $\varphi$. Both fully and equally represent the electrostatic field. Here, the **electric potential** $\varphi$ is introduced as the scalar local function of the electric field (see <imgref ImgNr10b>). This means: any point in space can either be connected to the two-dimensional value $\vec{E}$ or the one-dimensional value $\varphi$. Both fully and equally represent the electrostatic field.
  
-Similar to the the reference or ground level for the altitude in the gravitational field, the **reference or ground potential** can be chosen arbitrarily for a single task. Often the ground potential $\varphi_G$ is chosen to be located at infinity (see <imgref ImgNr10c>). In this case, the potential at the point $A$ can be calculated as following+Similar to the reference or ground level for the altitude in the gravitational field, the **reference or ground potential** can be chosen arbitrarily for a single task. Often the ground potential $\varphi_{ \rm G}= \varphi_{ \rm GND}$ is chosen to be located at infinity (see <imgref ImgNr10c>). In this case, the potential at the point $\rm A$ can be calculated as follows
  
 <WRAP> <WRAP>
 <imgcaption ImgNr10c | electric Potential at Infinity> <imgcaption ImgNr10c | electric Potential at Infinity>
 </imgcaption> </imgcaption>
-{{drawio>potentialInfinity}}+{{drawio>potentialInfinity.svg}}
 <WRAP> <WRAP>
  
 \begin{align*} \begin{align*}
-U_{AB} &= \int_{A}^{B} \vec{E} \cdot d \vec{s} &= \varphi_A - \varphi_B \\ +U_{ \rm AB} &= \int_{ \rm A}^{ \rm B} \vec{E} \cdot {\rm d\vec{s} &= \varphi_{ \rm A} - \varphi_{ \rm B} \\ 
-\rightarrow U_{AZ} &= \int_{A}^{Z} \vec{E} \cdot d \vec{s} &= \varphi_A - \underbrace{\varphi_Z}_\text{=0} \\ \\ +\rightarrow U_{ \rm AZ} &= \int_{ \rm A}^{ \rm Z} \vec{E} \cdot {\rm d\vec{s} &= \varphi_{ \rm A} - \underbrace{\varphi_{ \rm Z}}_\text{=0} \\ \\ 
-\rightarrow \varphi_A &= \int_{A}^{\infty} \vec{E} \cdot d \vec{s}     +\rightarrow \varphi_{ \rm A} &= \int_{ \rm A}^{\infty} \vec{E} \cdot {\rm d\vec{s}     
 \end{align*} \end{align*}
  
-Alternatively, also the potential $\varphi_B$ could be considered as ground potential. This would lead to the following potentials for $\varphi_A$ and $\varphi_C$:+Alternatively, also the potential $\varphi_{ \rm B}$ could be considered as ground potential. This would lead to the following potentials for $\varphi_{ \rm A}$ and $\varphi_{ \rm C}$:
  
 \begin{align*} \begin{align*}
-\varphi_A &= \varphi_A -  \underbrace{\varphi_B}_\text{=0} \\ +\varphi_{ \rm A} &= \varphi_{ \rm A} -  \underbrace{\varphi_{ \rm B}}_\text{=0} \\ 
-          &= \int_{A}^{B} \vec{E} \cdot d \vec{s} +               &= \int_{ \rm A}^{ \rm B} \vec{E} \cdot {\rm d\vec{s} 
 \end{align*} \end{align*}
  
 \begin{align*} \begin{align*}
-\varphi_C &= \varphi_C -  \underbrace{\varphi_B}_\text{=0} \\ +\varphi_{ \rm C} &= \varphi_{ \rm C} -  \underbrace{\varphi_{ \rm B}}_\text{=0} \\ 
-          &= \int_{C}^{B} \vec{E} \cdot d \vec{s} \\ +               &  \int_{ \rm C}^{ \rm B} \vec{E} \cdot {\rm d\vec{s} \\ 
-          &= - \int_{B}^{C} \vec{E} \cdot d \vec{s} \\+               &= - \int_{ \rm B}^{ \rm C} \vec{E} \cdot {\rm d\vec{s} \\
 \end{align*} \end{align*}
  
-For a positive charge the potential nearby the charge is positive and increasing, the closer one gets (see <imgref ImgNr197>).+For a positive charge the potential nearbythe charge is positive and increasing, the closer one gets (see <imgref ImgNr197>).
  
 <WRAP> <WRAP>
Zeile 498: Zeile 513:
  
  
-<callout title="Application of the electic Potential">+<callout title="Application of the electric Potential">
  
-The equation $U_{AB} = \int_{A}^{B} \vec{E} \cdot d \vec{s}$ can be used and applied depending on the geometry present.+The equation $U_{ \rm AB} = \int_{ \rm A}^{ \rm B} \vec{E} \cdot {\rm d\vec{s}$ can be used and applied depending on the geometry present.
 As an example, consider the situation of a charge moving from one electrode to another inside a capacitor: As an example, consider the situation of a charge moving from one electrode to another inside a capacitor:
  
 \begin{align*} \begin{align*}
-U_{AB} & \int_{A}^{B} \vec{E} \cdot d \vec{s} \quad && | \vec{E} \text{ and } d\vec{s} \text{ run parallel } \\ +U_{ \rm AB} & \int_{ \rm A}^{ \rm B} \vec{E} \cdot {\rm d\vec{s} \quad && | \vec{E} \text{ and } {\rm d}\vec{s} \text{ run parallel } \\ 
-U_{AB} & \int_{A}^{B} E \cdot ds  \quad && | \text{E=const.} \\ +U_{ \rm AB} & \int_{ \rm A}^{ \rm B} E \cdot {\rm d}s  \quad && | \text{E = const.} \\ 
-U_{AB} & E \cdot \int_{0}^{d} ds  \quad && | s \text{ starts at the negative plate. } d \text{ denotes the distance between the two plates }\\ +U_{ \rm AB} & E \cdot \int_{0}^{d} {\rm d}s  \quad && | s \text{ starts at the negative plate. } d \text{ denotes the distance between the two plates }\\ 
-U & E \cdot d  \quad && | U_{AB} \text{ corresponds to the voltage applied to the capacitor } U \\+U & E \cdot d  \quad && | U_{ \rm AB} \text{ corresponds to the voltage applied to the capacitor } U \\
 \end{align*} \end{align*}
  
 </callout> </callout>
- 
-==== tasks ==== 
- 
-{{page>task_1.1.3_with_calc&nofooter}} 
-{{page>task_1.1.4&nofooter}} 
-{{page>task_1.1.5&nofooter}} 
  
 =====1.4 Conductors in the Electrostatic Field ===== =====1.4 Conductors in the Electrostatic Field =====
Zeile 522: Zeile 531:
 <callout> <callout>
  
-=== Goals ===+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
  
   - know that no current flows in a conductor in an electrostatic field.   - know that no current flows in a conductor in an electrostatic field.
   - know how charges in a conductor are distributed in the electrostatic field.   - know how charges in a conductor are distributed in the electrostatic field.
-  - Be able to sketch the field lines at the surface of the conductor.+  - sketch the field lines at the surface of the conductor.
   - Understand the effect of the electrostatic induction of an external electric field.   - Understand the effect of the electrostatic induction of an external electric field.
  
 </callout> </callout>
  
-Up to now, charges were considered which were either rigid and not freely movable. At the following, charges at an electric conductor are investigated. These charges are only free to move within the conductor. At first an ideal conductor without resistance is considered.+Up to now, charges were considered which were either rigid or not freely movable.  
 +In the following, charges at an electric conductor are investigated.  
 +These charges are only free to move within the conductor.  
 +At firstan ideal conductor without resistance is considered.
  
 ==== Stationary Situation of a charged Object without external Field ==== ==== Stationary Situation of a charged Object without external Field ====
  
-In the first thought experiment, a conductor (e.g. a metal plate) is charged, see <imgref ImgNr10>. The additional charges create an electric field. Thus, a resultant force acts on each charge. The cause of this force are the electric fields of the surrounding electric charges. So the charges repel and move apart. \\+In the first thought experiment, a conductor (e.g. a metal plate) is charged, see <imgref ImgNr10> 
 +The additional charges create an electric field. Thus, a resultant force acts on each charge.  
 +The causes of this force are the electric fields of the surrounding electric charges. So the charges repel and move apart. \\
  
 <WRAP> <WRAP>
 <imgcaption ImgNr10 | Viewing a charged metal ball> <imgcaption ImgNr10 | Viewing a charged metal ball>
 </imgcaption> </imgcaption>
-{{drawio>LoadedMetalBall}}+{{drawio>LoadedMetalBall.svg}}
 <WRAP> <WRAP>
  
-The movement of the charge continues until a force equilibrium is reached. In this steady state, there is no longer a resultant force acting on the single charge. In <imgref ImgNr10> this can be seen on the right: the repulsive forces of the charges are counteracted by the attractive forces of the atomic shells. \\+The movement of the charge continues until a force equilibrium is reached.  
 +In this steady state, there is no longer a resultant force acting on the single charge.  
 +In <imgref ImgNr10> this can be seen on the right: the repulsive forces of the charges are counteracted by the attractive forces of the atomic shells. \\
 Results: Results:
   * The charge carriers are distributed on the surface.   * The charge carriers are distributed on the surface.
   * Due to the dispersion of the charges, the interior of the conductor is free of fields.   * Due to the dispersion of the charges, the interior of the conductor is free of fields.
-  * All field lines are perpendicular to the surface. Because: if they were not, there would be a tangential component of the field, i.e. along the surface. Thus a force would act on charge carriers and they would move accordingly.+  * All field lines are perpendicular to the surface. Because: if they were not, there would be a parallel component of the field, i.e. along the surface. Thus a force would act on charge carriers and they would move accordingly.
  
 +<wrap #edu_task_1 />
 <panel type="info" title="Educational Task - Why is there a discharge at pointy ends of conductors?"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Educational Task - Why is there a discharge at pointy ends of conductors?"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-Point discharge is a well-known phenomenon, which can be seen as {{wp>corona discharge}} on power lines (where ist also creates the summing sound) or is used in {{wp>spark plug}}s. The phenomenon addresses the effect, that there are much more charges at the corners and edges of a conductor. But why is that so? For this, it is feasible to try to calculate the charge density at different spots of a conductor.+Point discharge is a well-known phenomenon, which can be seen as {{wp>corona discharge}} on power lines (where it also creates the summing sound) or is used in {{wp>spark plug}}s. The phenomenon addresses the effect, that there are much more charges at the corners and edges of a conductor. But why is that so? For this, it is feasible to try to calculate the charge density at different spots of a conductor.
  
 <WRAP> <WRAP>
Zeile 559: Zeile 576:
 </imgcaption> <WRAP> </imgcaption> <WRAP>
 {{url>https://www.falstad.com/emstatic/EMStatic.html?rol=$+1+256+128+0+0+318+0.048828125+364%0Ae+1+2+0+256+256+276+276+0%0Ae+1+2+0+256+256+276+276+0%0Ae+1+2+100+42+58+133+149+0%0Ae+0+2+0+256+256+276+276+0%0Ae+0+2+100+73+73+146+126+0%0Ae+0+2+100+147+96+162+100+0%0Ae+0+2+100+92+88+158+109+0%0Aw+0+2+100+112+138+157+99%0Aw+0+2+100+110+66+157+98%0A {{url>https://www.falstad.com/emstatic/EMStatic.html?rol=$+1+256+128+0+0+318+0.048828125+364%0Ae+1+2+0+256+256+276+276+0%0Ae+1+2+0+256+256+276+276+0%0Ae+1+2+100+42+58+133+149+0%0Ae+0+2+0+256+256+276+276+0%0Ae+0+2+100+73+73+146+126+0%0Ae+0+2+100+147+96+162+100+0%0Ae+0+2+100+92+88+158+109+0%0Aw+0+2+100+112+138+157+99%0Aw+0+2+100+110+66+157+98%0A
- 600,600 noborder}}+ 600,400 noborder}}
 </WRAP></WRAP> </WRAP></WRAP>
  
 <WRAP> <WRAP>
-<imgcaption ImgNr194| examples for arbitrarily formed conductor>+<imgcaption ImgNr194| examples for an arbitrarily formed conductor>
 </imgcaption> </imgcaption>
-{{drawio>StrangelyFormedMetalObject}}+{{drawio>StrangelyFormedMetalObject.svg}}
 </WRAP> </WRAP>
  
-In the <imgref ImgNr194> an example for a "pointy" conductor is given in image (a). The surface of the conductor is always at the same potential. +In the <imgref ImgNr194> an example of a "pointy" conductor is given in image (a). The surface of the conductor is always at the same potential. 
-In order to cope with this complex shape and the wanted charge density, the following path shall be taken: +To cope with this complex shape and the wanted charge density, the following path shall be taken: 
-  -  It is good to first calculate the potential field of a point charge. \\ For this calculate $U_{AB} =  \int_{C}^{G} \vec{E} \cdot d \vec{s}$ with $\vec{E} ={{1} \over {4\pi\cdot\varepsilon}} \cdot {{q} \over {r^2}} \cdot \vec{e}_r $, where $\vec{e}_r$ is the unit vector pointing radialy away, $C$ is a point at distance $r_0$ from the charge and $G$ is the ground potential at infinity.+  -  It is good to first calculate the potential field of a point charge. \\ For this calculate $U_{ \rm CG} =  \int_{ \rm C}^{ \rm G} \vec{E} \cdot {\rm d\vec{s}$ with $\vec{E} ={{1} \over {4\pi\cdot\varepsilon}} \cdot {{q} \over {r^2}} \cdot \vec{e}_r $, where $\vec{e}_r$ is the unit vector pointing radially away, ${ \rm C}$ is a point at distance $r_0$ from the charge and ${ \rm G}$ is the ground potential at infinity.
   - Compare the field and the potentials of the different spherical conductors in <imgref ImgNr194>, image (b).    - Compare the field and the potentials of the different spherical conductors in <imgref ImgNr194>, image (b). 
     - Are there differences for the electric field $\vec{E}$ outside the spherical conductors? Are the potentials on the surface the same?      - Are there differences for the electric field $\vec{E}$ outside the spherical conductors? Are the potentials on the surface the same? 
     - What can be conducted for the field of the three situations in (b) and (d), when the total charge on the surface is considered to be always the same?     - What can be conducted for the field of the three situations in (b) and (d), when the total charge on the surface is considered to be always the same?
   - For spherical conductors the surface charge density is constant. Given that this charge density leads to the overall charge $q$, how is $\varrho_A$ depending on the radius $r$ of a sphere?   - For spherical conductors the surface charge density is constant. Given that this charge density leads to the overall charge $q$, how is $\varrho_A$ depending on the radius $r$ of a sphere?
-  - Now, the situation in (c) shall be considered. Here, all components are conducting, i.e. the potentials on the surface are similar. Both spheres shall be considered to be as far away from each other, that they show an undisturbed field nearby their surfaces. In this case, for charges on the surface of the curvature to the left and to the right it represents the same situation like in (a). For the next stept, it is important that by this, the potentials of the left sphere with $q_1$ and $r_1$ and the right sphere with $q_2$ and $r_2$ are the same.  +  - Now, the situation in (c) shall be considered. Here, all components are conducting, i.e. the potentials on the surface are similar. Both spheres shall be considered to be as far away from each other, that they show an undisturbed field nearby their surfaces. In this case, charges on the surface of the curvature to the left and the right represent the same situation as in (a). For the next step, it is important that by this, the potentials of the left sphere with $q_1$ and $r_1$ and the right sphere with $q_2$ and $r_2$ are the same.  
     - Set up this equality formula based on the formula for the potential from question 1.      - Set up this equality formula based on the formula for the potential from question 1. 
     - Insert the relationship for the overall charges $q_1$ and $q_2$ based on the surface charge densities $\varrho_{A1}$ and $\varrho_{A2}$ of a sphere and their radii $r_1$ and $r_2$.     - Insert the relationship for the overall charges $q_1$ and $q_2$ based on the surface charge densities $\varrho_{A1}$ and $\varrho_{A2}$ of a sphere and their radii $r_1$ and $r_2$.
-    - What ist the relationship between the bending of the surface and the charge density?+    - What is the relationship between the bending of the surface and the charge density?
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 584: Zeile 601:
 ==== Electrostatic Induction ==== ==== Electrostatic Induction ====
  
-In the second thought experiment, an uncharged conductor (e.g. a metal plate) is brought into an electrostatic field (<imgref ImgNr11>). The external field or the resulting Coulomb force causes the moving charge carriers to be displaced. \\+In the second thought experiment, an uncharged conductor (e.g. a metal plate) is brought into an electrostatic field (<imgref ImgNr11>).  
 +The external field or the resulting Coulomb force causes the moving charge carriers to be displaced. \\
  
 <WRAP> <WRAP>
 <imgcaption ImgNr11 | Viewing the induced charge separation> <imgcaption ImgNr11 | Viewing the induced charge separation>
 </imgcaption> </imgcaption>
-{{drawio>InfluenceAnMetalObject}}+{{drawio>InfluenceAnMetalObject.svg}}
 <WRAP> <WRAP>
 +
 +<WRAP>
 +<imgcaption ImgNr178| field lines by charge separation>
 +</imgcaption> <WRAP>
 +{{url>https://www.falstad.com/emstatic/EMStatic.html?rol=$+1+256+128+0+10+321+0.048828125+364%0Aw+0+2+-100+49+50+49+186%0Aw+0+2+100+133+53+134+190%0Ab+0+2+0+72+102+77+138+0%0Ab+0+2+0+105+102+110+138+0%0A 600,400 noborder}}
 +</WRAP></WRAP>
  
 Results: Results:
   * The charge carriers are still distributed on the surface.   * The charge carriers are still distributed on the surface.
-  * Now an equilibrium is reachedwhen just so many charges have moved, that the electric field inside the conductor disappears (again). +  * Now equilibrium is reached when just so many charges have moved, that the electric field inside the conductor disappears (again). 
-  * The field lines leave the surface again at right angles. Again, a tangential component would cause a charge shift in the metal.+  * The field lines leave the surface again at right angles. Again, a parallel component would cause a charge shift in the metal.
  
-This effect of charge displacement in conductive objects by an electrostatic field is called **electrostatic induction** (in German: Influenz). Induced charges can be separated (<imgref ImgNr11> right). If we look at the separated induced charges without the external field, their field is again just as strong in magnitude as the external field only in opposite direction.+This effect of charge displacement in conductive objects by an electrostatic field is referred to as **electrostatic induction** (in German: //Influenz//).  
 +Induced charges can be separated (<imgref ImgNr11> right).  
 +If we look at the separated induced charges without the external field, their field is again just as strong in magnitude as the external field only in the opposite direction.
  
 <callout icon="fa fa-exclamation" color="red" title="Note:"> <callout icon="fa fa-exclamation" color="red" title="Note:">
Zeile 605: Zeile 631:
 </callout> </callout>
  
-How can the conductor surface be an equipotential surface despite different charge on both sides? Equipotential surfaces are defined only by the fact that the movement of a charge along such a surface does not require/produce a change in energy. Since the interior of the conductor is field free, movement there can occur without a change in energy. As the potential between two points is independent of the path between them, a path along the surface is also possible without energy expenditure.+How can the conductor surface be an equipotential surface despite different charges on both sides?  
 +Equipotential surfaces are defined only by the fact that the movement of a charge along such a surface does not require/produce a change in energy.  
 +Since the interior of the conductor is field-free, movement there can occur without a change in energy.  
 +As the potential between two points is independent of the path between them, a path along the surface is also possible without energy expenditure.
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 611: Zeile 640:
 ==== Tasks ==== ==== Tasks ====
  
-Application of electrostatic induction: Protective bag against electrostatic charge / discharge (cf. [[https://www.youtube.com/watch?v=imdtXcnywb8&t=600s|Video]])+Application of electrostatic induction: Protective bag against electrostatic charge/discharge (cf. [[https://www.youtube.com/watch?v=imdtXcnywb8&t=600s|Video]])
  
 <panel type="info" title="Task 1.4.1 Simulation"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Task 1.4.1 Simulation"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
Zeile 618: Zeile 647:
 <imgcaption ImgNr198| examples for equipotential lines> <imgcaption ImgNr198| examples for equipotential lines>
 </imgcaption> <WRAP> </imgcaption> <WRAP>
-{{url>https://www.falstad.com/vector2de/vector2de.html?f=CylinderInField&fc=Floor%3A%20field%20magnitude&fl=Overlay%3A%20equipotentials&d=vectors&m=Mouse%20%3D%20Adjust%20Angle&st=20&vd=32&hs=40&a1=40&ft=true&rx=63&ry=0&rz=0&zm=1.2 600,600 noborder}}+{{url>https://www.falstad.com/vector2de/vector2de.html?f=CylinderInField&fc=Floor%3A%20field%20magnitude&fl=Overlay%3A%20equipotentials&d=vectors&m=Mouse%20%3D%20Adjust%20Angle&st=20&vd=32&hs=40&a1=40&ft=true&rx=63&ry=0&rz=0&zm=1.2 600,400 noborder}}
 </WRAP></WRAP> </WRAP></WRAP>
  
 In the simulation in <imgref ImgNr198> the equipotential lines and electric field at different objects can be represented. In the simulation in <imgref ImgNr198> the equipotential lines and electric field at different objects can be represented.
-In the beginning the situation of an infinitely long cylinder in a homogeneous electric field is shown. The solid lines show the equipotential surfaces. The small arrows show the electric field.+In the beginningthe situation of an infinitely long cylinder in a homogeneous electric field is shown.  
 +The solid lines show the equipotential surfaces. The small arrows show the electric field.
  
-  - What is the angle between of the field on the surface of the cylinder?  +  - What is the angle between the field on the surface of the cylinder?  
-  - Once the option ''Flat View'' is deacivated, an alternative view of this situation can be seen. Additionally, charged test particles can be added with ''Display: Particles (Vel.)''Similar to which other physical field is this alternative view looks like?+  - Once the option ''Flat View'' is deactivated, an alternative view of this situation can be seen. Additionally, charged test particles can be added with ''Display: Particles (Vel.)''This alternative view looks similar to which other physical field?
   - What can be said about the potential distribution on the cylinder?   - What can be said about the potential distribution on the cylinder?
   - On the left half the field lines enter the body, on the right half they leave the body. What can be said about the charge carrier distribution at the surface? Check also the representation ''Floor: charge''!   - On the left half the field lines enter the body, on the right half they leave the body. What can be said about the charge carrier distribution at the surface? Check also the representation ''Floor: charge''!
   - Is there an electric field inside the body?   - Is there an electric field inside the body?
-  - Is this cylinder metallic, semiconducting or insulating?+  - Is this cylinder metallic, semiconductingor insulating?
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 637: Zeile 667:
 {{page>task_1.4.4&nofooter}} {{page>task_1.4.4&nofooter}}
  
 +<wrap anchor #exercise_1_4_5 />
 +<panel type="info" title="Task 1.4.5 Simulation"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-=====1.The Electric Displacement Field and Gaussian theorem of electrostatics =====+Given is the two-dimensional component shown in <imgref ImgNr148>. The component shall be charged positively. \\ 
 +In the picture, there are 4 positions marked with numbers. \\ \\ 
 + 
 +Order the numbered positions by increasing charge density!
  
 <WRAP> <WRAP>
-The electric displacement Field or electric (flux) density +<imgcaption ImgNr148| examples for conductive charged 2-dimensional component> 
-{{youtube>UqzXWU6TsQY}} +</imgcaption> <WRAP> 
-</WRAP>+{{drawio>electrical_engineering_2:ExampleForChargesOnSurfaces}} 
 +</WRAP></WRAP> 
 + 
 + 
 +#@HiddenBegin_HTML~1,Result~@# 
 + 
 +$\varrho_2 < \varrho_3 < \varrho_1 < \varrho_4$ 
 + 
 +<WRAP> 
 +<imgcaption ImgNr031 | examples of field lines> 
 +</imgcaption> <WRAP> 
 +{{url>https://www.falstad.com/emstatic/EMStatic.html?rol=$+1+409+209+0+10+322+0.5+397%0Ae+1+2+100+127+165+245+284+0%0Ae+0+2+100+135+159+288+248+0%0Ae+0+2+100+285+187+315+195+0%0Ae+0+2+100+174+174+305+216+0%0Aw+0+2+100+221+271+309+194%0Aw+0+2+100+291+206+339+174%0Ae+0+2+100+199+182+319+191+0%0AE+1+2+100+88+104+265+284+107+124+255+271+0%0AE+1+2+100+121+123+184+185+133+135+171+173+0%0Ae+0+2+100+170+118+247+210+0%0Ae+0+2+100+106+184+180+261+0%0Ae+0+2+100+166+110+209+145+0%0Ae+0+2+100+100+154+144+222+0%0Ae+0+2+100+217+165+276+203+0%0A 600,600 noborder}} 
 + 
 +</WRAP></WRAP> 
 + 
 +#@HiddenEnd_HTML~1,Result~@# 
 + 
 + 
 +</WRAP></WRAP></panel> 
 + 
 +=====1.5 The Electric Displacement Field and Gauss's Law of electrostatics =====
  
 <callout> <callout>
  
-=== Goals ===+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
  
   - know how to get the electric displacement field from single charges   - know how to get the electric displacement field from single charges
-  - be able to state for a given area the electric displacement field of an arrangement +  - state for a given area the electric displacement field of an arrangement 
-  - know the general meaning of Gauss' theorem of electrostatics +  - know the general meaning of Gauss's law of electrostatics 
-  - be able to choose a closed surface appropriately and apply Gauss' theorem+  - choose a closed surface appropriately and apply Gauss's law
  
 </callout> </callout>
  
-Now we want to consider the situation at the two conductive plates with the area $\Delta A$ in the electrostatic field $\vec{E}$ in vacuum a little more exactly. For this purpose, the plates shall first be brought into the field separately. As written in <imgref ImgNr12> on the left, the electrostatic induction in a single plate is not considered. Rather, we are now interested in what happens when the plates are brought together. In this case, graphically speaking, just for each field line ending on the pair of plates, a single charge must move from one plate to the other. This ability to separate charges (i.e. to generate electrostatic induction) is another ability of space.+For a detailed description please see the chapters [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/06%3A_Gauss's_Law/6.02%3A_Electric_Flux|6.2 Electric Flux]] and [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/06%3A_Gauss's_Law/6.03%3A_Explaining_Gausss_Law| 6.3 Explaining Gauss's Law]]. 
 + 
 +==== Electric Displacement Flux Density D ==== 
 + 
 +Up to now, ... 
 +  * ... we investigated the __effect__ of the electric field onto a (probe) charge, which can be calculated by $\vec{F}= \vec{E}\cdot q$.  
 +  * ... the field $\vec{E}$ is principally a property of the space and the charges inside of it. 
 +  * ... we also only had a look at "empty space" containing charges and/or ideally conducting components  
 + 
 +The following introduced **electric displacement flux density $\vec{D}$** is only focusing on the __cause__ of the electric fields.  
 +The effect can differ since the space can also "hinder" the electric field to an effect. This is especially true when the situation within a material and not a vacuum has to be analyzed. 
 + 
 +To investigate this situation, we want to consider two conductive plates (X) and (Y) with the area $\Delta A$ in the electrostatic field $\vec{E}$ in vacuum a little more exactly. For this purpose, the plates shall first be brought into the field separately. 
  
 <WRAP> <WRAP>
 <imgcaption ImgNr12 | induced charge separation and electric displacement field> <imgcaption ImgNr12 | induced charge separation and electric displacement field>
 </imgcaption> </imgcaption>
-{{drawio>displacementflow}}+{{drawio>displacementflow.svg}}
 <WRAP> <WRAP>
  
-In the previous arrangement (homogeneous field, all surfaces parallel to each other), the surface charge density $\varrho_A = {{\Delta Q}\over{\Delta A}}$ thus electrostatic induction is proportional to the external field $E$. It holds:+As written in <imgref ImgNr12> a), the electrostatic induction in a single plate is not considered. Rather, we are now interested in what happens based on the electrostatic induction __when the plates are brought together__. The electrostatic induction will again move charges inside the conductors. Near the negative outer plate (1) positive charges get induced on (X). Equally, near to positive outer plate (2) negative charges get induced on (Y). Graphically speaking, for each field line ending on the pair of plates, a single charge must move from one plate to the other. The direction of the movement is similar to the direction of $\vec{E}$. This ability to separate charges (i.e. to generate electrostatic induction) is another property of space. This property is independent of any matter inside the space. 
 + 
 +This movement is represented with the **displacement flux $\Psi$**. The displacement flux is given by the amount of moved charge $\Psi = n \cdot e = Q$, with the unit $[\Psi]= [Q] = 1~{ \rm C}$. When looking at <imgref ImgNr12> b) and c), it is evident, that for larger plates (X) and (Y) more charges get displaced. So, to get a constant value by dividing displacement flux by the corresponding area. This leads to the **electric displacement field $D$** (sometimes also displacement flux density), which is defined as: 
 + 
 +\begin{align*} 
 +\boxed{ D = {{\Psi}\over{A}} } 
 +\end{align*} 
 + 
 +On the other hand one could also only focus on the induced charges on the surfaces: In the shown arrangement (homogeneous field, all surfaces parallel to each other), the surface charge density $\varrho_A = {{\Delta Q}\over{\Delta A}}$ thus electrostatic induction is proportional to the external field $E$. It holds:
  
 \begin{align*} \begin{align*}
Zeile 673: Zeile 748:
 \end{align*} \end{align*}
  
-The **electric displacement field** (sometimes also displacement flux density) is now defined as:+Since the induced charges $\Delta Q$ are equal to the flux $\Psi$ the **electric displacement field** is also given by: 
  
 \begin{align} \begin{align}
Zeile 679: Zeile 755:
 \end{align} \end{align}
  
-The electric displacement field has the unit "charge per area", i.e. $As/m^2$. Therefore the flux density is also a field. It points in the same direction as the electrostatic field $\vec{E}$.+  * Similar to the electric field $\vec{E}also the flux density is a field.  
 +  * It can be interpreted as a vector field. pointing in the same direction as the electric field $\vec{E}$. 
 +  * The electric displacement field has the unit "charge per area", i.e. ${ \rm As/m^2}$.
  
-Why is now a second field introduced? This shall become clearer in the following, but first it shall be considered again how the electrostatic field $\vec{E}$ was defined. This resulted from the Coulomb force, i.e. the __action on a sample charge__. The electric displacement field, on the other hand, is not described by an action, but __caused by charges__.+Why is now a second field introduced? This shall become clearer in the following, but firstit shall be considered again how the electric field $\vec{E}$ was defined. This resulted from the Coulomb force, i.e. the __action on a sample charge__. The electric displacement field, on the other hand, is not described by an action, but __caused by charges__.
 The two are related by the above equation. The two are related by the above equation.
 It will be shown in later sub-chapters that the different influences from the same cause of the field can produce different effects on other charges. It will be shown in later sub-chapters that the different influences from the same cause of the field can produce different effects on other charges.
  
-The **permittivity** (or dielectric conductivity) $\varepsilon$ thus results as a constant of proportionality between $D$-field and $E$-field. The inverse ${{1}\over{\varepsilon}}$ is a measure of how much effect ($E$-field) is available from the cause ($D$-field) at a point. In vacuum, $\varepsilon\varepsilon_0$, the electric field constant.+The **permittivity** (or dielectric conductivity) $\varepsilon$ thus results as a constant of proportionality between $D$-field and $E$-field. The inverse ${{1}\over{\varepsilon}}$ is a measure of how much effect ($E$-field) is available from the cause ($D$-field) at a point. In vacuum, $\varepsilon$ is $\varepsilon_0$, the electric field constant.
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
-==== General relationship between charge Q and electric displacement field D ====+==== General relationship between Charge Q and electric Displacement Field D ====
  
-Up to now, only a homogeneous field and an observation surface perpendicular to the field lines were considered. Thus only equipotential surfaces (e.g. a metal foil) were considered+Up to now, only a homogeneous field was considered and only a surface perpendicular to the field lines. Thus only equipotential surfaces (e.g. a metal foil) were investigated
-In that case it was found that the charge is equal to the electric displacement field on the surface: $\Delta Q = D\cdot \Delta A$.+In that caseit was found that the charge is equal to the electric displacement field on the surface: $\Delta Q = D\cdot \Delta A$.
  
 This formula is now to be extended to arbitrary surfaces and inhomogeneous fields. This formula is now to be extended to arbitrary surfaces and inhomogeneous fields.
-As with the potential and other physical problems, the problem is to be broken down into smaller subproblems, solved and then summed up. For this purpose a small area element $\Delta A = \Delta x \cdot \Delta y$ is needed. In addition, the position of the area in space should be taken into account. This is possible if the cross product is chosen: $\Delta \vec{A} = \Delta \vec{x} \cdot \Delta \vec{y}$, since so is the surface normal. In what follows, the cross product will be relevant to the calculation, but the consequences of the cross product will be:+As with the potential and other physical problems, the problem is to be broken down into smaller sub-problems, solvedand then summed up. For this purposea small area element $\Delta A = \Delta x \cdot \Delta y$ is needed. In addition, the position of the area in space should be taken into account. This is possible if the cross product is chosen: $\Delta \vec{A} = \Delta \vec{x} \times \Delta \vec{y}$, since so is the surface normal. In what follows, the cross-product will be relevant to the calculation, but the consequences of the cross-product will be:
   * The magnitude of $\Delta \vec{A}$ is equal to the area $\Delta A$.   * The magnitude of $\Delta \vec{A}$ is equal to the area $\Delta A$.
   * The direction of $\Delta \vec{A}$ is perpendicular to the area.   * The direction of $\Delta \vec{A}$ is perpendicular to the area.
-In addition, let $\Delta A$ now become infinitesimally small, that is, $dA dx \cdot dy$.+In addition, let $\Delta A$ now become infinitesimally small, that is, ${\rm d}A {\rm d}x \cdot {\rm d}y$.
  
-=== 1. probleminhomogeneity → solutioninfinidesimal area === +=== 1. ProblemInhomogenity → Solutioninfinitesimal Area === 
-First, we shall still assume an observation surface perpendicular to the field lines, but an inhomogeneous field. In the inhomogeneous field, the magnitude of $D$ is no longer constant. In order to correct this, $dA$ is chosen so small that just "only one field line" passes through the surface. In this case D is homogeneous again. Thus holds:+First, we shall still assume an observation surface perpendicular to the field lines, but an inhomogeneous field. In the inhomogeneous field, the magnitude of $D$ is no longer constant. To correct this, ${\rm d}A$ is chosen so small that just "only one field line" passes through the surface. In this case, $Dis homogeneous again. Thus holds:
  
 $Q = D\cdot A$ $Q = D\cdot A$
  
 \begin{align*} \begin{align*}
-Q = D\cdot A \quad \rightarrow \quad dQ = D\cdot dA+Q = D\cdot A \quad \rightarrow \quad {\rm d}Q = D\cdot {\rm d}A
 \end{align*} \end{align*}
 +
 +<WRAP>
 +<imgcaption ImgNr54 | Solving the Inhomogenity>
 +</imgcaption>
 +{{drawio>solutionInhomogenity.svg}}
 +</WRAP>
  
 === 2nd problem: arbitrary surface → solution: vectors === === 2nd problem: arbitrary surface → solution: vectors ===
-Now assume an arbitrary surface. Thus the $\vec{D}$-field no longer penetrates through the surface at right angles. But for the electrostatic induction only the rectangular part was relevant. So only this part has to be considered. This results from consideration of the cosine of the angle between (right-angled) surface normal and $\vec{D}$-field:+Now assume an arbitrary surface. Thus the $\vec{D}$-field no longer penetrates through the surface at right angles. But for the electrostatic inductiononly the rectangular part was relevant. So only this part has to be considered. This results from consideration of the cosine of the angle between (right-angled) area vector and $\vec{D}$-field:
  
 \begin{align*} \begin{align*}
-dQ = D\cdot dA \quad \rightarrow \quad dQ = D\cdot dA \cdot cos(\alpha) = \vec{D} \cdot d \vec{A}+{\rm d}Q = D\cdot {\rm d}A \quad \rightarrow \quad {\rm d}Q = D\cdot {\rm d}A \cdot \cos(\alpha) = \vec{D} \cdot {\rm d\vec{A}
 \end{align*} \end{align*}
  
-=== 3. summing up === +<WRAP> 
-Since so far only infinitesimally small surface pieces were considered must now be integrated again to a total surface. If a closed enveloping surface around a body is chosen, the result is:+<imgcaption ImgNr55 | Solving the Surface Direction> 
 +</imgcaption> 
 +{{drawio>solutionSurfaceDirection.svg}} 
 +</WRAP> 
 + 
 +The area vector and the surface {{wp>Normal_(geometry|normal}} can be seen in <imgref ImgNr655>.  
 + 
 +<WRAP> 
 +<imgcaption ImgNr655 | Examples for normal vectors> 
 +</imgcaption> 
 +{{drawio>ExampleForNormal.svg}} 
 +</WRAP> 
 + 
 +=== 3. Summing up === 
 +Since so far only infinitesimally small surface pieces were considered must now be integrated again into a total surface. If a closed enveloping surface around a body is chosen, the result is:
  
 \begin{align} \begin{align}
-\boxed{\int dQ = \iint_{\text{closed surf.}} \vec{D} \cdot d \vec{A} = Q}+\boxed{\int {\rm d}Q {\rlap{\rlap{\int_A\int} \: \LARGE \circ} \vec{D} \cdot {\rm d\vec{A} = \iiint_V \varrho_V {\rm d}\vec{V} = Q}
 \end{align} \end{align}
  
-The "sum" of the $D$-field emanating over the surface is thus just as large as the sum of the charges contained thereinsince the charges are just the sources of this field. This can be compared vividly with a bordered swamp area with water sources and sinks: +The symbol ${\rlap{\Large \rlap{\int} \int} \, \LARGE \circ}$ denotes, that there is a closed surface used for the integration. 
-  * The sources in the marsh correspond to the positive chargesthe sinks to the negative charges. The formed water corresponds to the $D$-field.+ 
 +The "sum" of the $D$-field emanating over the surface is thus just as large as the sum of the charges contained therein since the charges are just the sources of this field.  
 +This can be compared with a bordered swamp area with water sources and sinks: 
 +  * The sources in the marsh correspond to the positive charges and the sinks to the negative charges. The formed water corresponds to the $D$-field.
   * The sum of all sources and sinks equals in this case just the water stepping over the edge.   * The sum of all sources and sinks equals in this case just the water stepping over the edge.
  
 +<WRAP>
 +<imgcaption ImgNr55 | Comparison to swamp>
 +</imgcaption>
 +{{drawio>comparisonSwamp.svg}}
 +</WRAP>
  
 ==== Applications ==== ==== Applications ====
Zeile 733: Zeile 839:
 === Spherical Capacitor === === Spherical Capacitor ===
  
-Spherical capacitors are now rarely found in practical applications. In the {{wp>Van-de-Graaff generator}}, spherical capacitors are used to store the high DC voltages. The earth also represents a spherical capacitor. In this context, the electric field of $100...300 V/m$ in the atmosphere is remarkablesince several hundred volts would have to be present between head and foot (for resolution, see the article [[https://www.wissenschaft.de/umwelt-natur/spannung-liegt-in-der-luft/|Spannung lieg in der Luft]] in Bild der Wissenschaft).+Spherical capacitors are now rarely found in practical applications. In the {{wp>Van-de-Graaff generator}}, spherical capacitors are used to store the high DC voltages. The earth also represents a spherical capacitor. In this context, the electric field of $100...300~{ \rm V/m}$ in the atmosphere is remarkable since several hundred volts would have to be present between head and foot (for resolution, see the article [[https://www.en-former.com/en/electricity-from-the-air/|Electricity from the air]] in //Bild der Wissenschaft//).
  
 === Plate Capacitor === === Plate Capacitor ===
Zeile 739: Zeile 845:
 The relation between the $E$-field and the voltage $U$ on the ideal plate capacitor is to be derived from the integral of displacement flux density $\vec{D}$: The relation between the $E$-field and the voltage $U$ on the ideal plate capacitor is to be derived from the integral of displacement flux density $\vec{D}$:
 \begin{align*} \begin{align*}
-Q = \iint_{\text{closed surf.}} \vec{D} \cdot d \vec{A}+Q = {\rlap{\rlap{\int_A\int} \: \LARGE \circ} \vec{D} \cdot {\rm d\vec{A}
 \end{align*} \end{align*}
  
 <callout icon="fa fa-info" color="grey" title="Outlook"> <callout icon="fa fa-info" color="grey" title="Outlook">
  
-The consideration of the displacement flux density also solved a problem, which arose quite for at electric circuits: From considerations about magnetic fields the following quite obvious sounding fact can be led: In a series-connected, switched circuit, the current at each point is the same. But if this series circuit contains a capacitor, no electric current can flow inside! The solution is to understand a temporal change of the displacement flux also as a current, which can be generated a magnetic field (thus vortex). Mathematically, vortices are described via the {{wp>Curl_(mathematics)|Curl}} (in German: Rotation) - a multidimensional differential operator. A deeper {{wp>Displacement_current#Generalizing_Ampère's_circuital_law|derivation and solution}} is not considered in the first semester. However, the application will show that the above equation plays a central role in electrical engineering. It is part of the so-called {{wp>Maxwell's equations}}.+The consideration of the displacement flux density also solved a problem, which arose for electric series circuits. We know that the current at each point of a series circuit is the same. But what if there is a capacitor in this series circuit? There is no electric current flowing inside the dielectric material. This problem can be solved considering that connection of magnetic fields and current flow: any magnetic field is based on moving charge and any moving charge creates a magnetic field. By this, the solution is that the temporal change of the displacement flux is interpreted as a current, which is generated by a magnetic field (thus a magnetic "vortex" around the circuit). Mathematically, vortices are described via the {{wp>Curl_(mathematics)|Curl}} (in German: //Rotation//) - a multidimensional differential operator. A deeper {{wp>Displacement_current#Generalizing_Ampère's_circuital_law|derivation and solution}} is not considered in the first semester. However, the application will show that the equation above plays a central role in electrical engineering. It is part of the so-called {{wp>Maxwell's equations}}.
  
 </callout> </callout>
  
 +
 +
 +==== tasks====
 +
 +<panel type="info" title="Task 1.5.1 induced Charges"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A plate capacitor with a distance of $d = 2 ~{ \rm cm}$ between the plates and with air as dielectric ($\varepsilon_{ \rm r}=1$) gets charged up to $U = 5~{ \rm kV}$. 
 +In between the plates a thin metal foil with the area $A = 45~{ \rm cm^2}$ is introduced parallel to the plates. 
 +
 +Calculate the amount of the displaced charges in the thin metal foil.
 +
 +<button size="xs" type="link" collapse="Loesung_1_5_1_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_1_5_1_Tipps" collapsed="true">
 +  * What is the strength of the electric field $E$ in the capacitor?
 +  * Calculate the displacement flux density $D$
 +  * How can the charge $Q$ be derived from $D$?
 +</collapse>
 +
 +<button size="xs" type="link" collapse="Loesung_1_5_1_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_1_5_1_Endergebnis" collapsed="true">
 +$Q = 10 ~{ \rm nC}$
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +
 +<panel type="info" title="Task 1.5.2 Manipulating a Capacitor I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +An ideal plate capacitor with a distance of $d_0 = 7 ~{ \rm mm}$ between the plates gets charged up to $U_0 = 190~{ \rm V}$ by an external source. 
 +The source gets disconnected. After this, the distance between the plates gets enlarged to $d_1 = 7 ~{ \rm cm}$. 
 + 
 +  - What happens to the electric field and the voltage?
 +  - How does the situation change (electric field/voltage), when the source is not disconnected?
 +
 +<button size="xs" type="link" collapse="Loesung_1_5_2_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_1_5_2_Tipps" collapsed="true">
 +  * Consider the displacement flux through a surface around a plate
 +</collapse>
 +
 +<button size="xs" type="link" collapse="Loesung_1_5_2_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_1_5_2_Endergebnis" collapsed="true">
 +  - $U_1 = 1.9~{ \rm kV}$, $E_1 = 27~{ \rm kV/m}$ 
 +  - $U_1 = 190~{ \rm V}$, $E_1 = 2.7~{ \rm kV/m}$ 
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +
 +<panel type="info" title="Task 1.5.3 Manipulating a Capacitor II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +An ideal plate capacitor with a distance of $d_0 = 6 ~{ \rm mm}$ between the plates and with air as dielectric ($\varepsilon_0=1$) is charged to a voltage of $U_0 = 5~{ \rm kV}$. 
 +The source remains connected to the capacitor. In the air gap between the plates, a glass plate with $d_{ \rm g} = 4 ~{ \rm mm}$ and $\varepsilon_{ \rm r} = 8$ is introduced parallel to the capacitor plates.
 + 
 +  - Calculate the partial voltages on the glas $U_{ \rm g}$ and on the air gap $U_{ \rm a}$.
 +  - What would be the maximum allowed thickness of a glass plate, when the electric field in the air-gap shall not exceed $E_{ \rm max}=12~{ \rm kV/cm}$?
 +
 +<button size="xs" type="link" collapse="Loesung_1_5_3_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_1_5_3_Tipps" collapsed="true">
 +  * build a formula for the sum of the voltages first 
 +  * How is the voltage related to the electric field of a capacitor?
 +</collapse>
 +
 +<button size="xs" type="link" collapse="Loesung_1_5_3_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_1_5_3_Endergebnis" collapsed="true">
 +  - $U_{ \rm a} = 4~{ \rm kV}$, $U_{ \rm g} = 1 ~{ \rm kV}$ 
 +  - $d_{ \rm g} = 5.96~{ \rm mm}$
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +
 +<panel type="info" title="Task 1.5.4 Spherical capacitor"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +Two concentric spherical conducting plates set up a spherical capacitor. 
 +The radius of the inner sphere is $r_{ \rm i} = 3~{ \rm mm}$, and the inner radius from the outer sphere is $r_{ \rm o} = 9~{ \rm mm}$. 
 +
 +  - What is the capacity of this capacitor, given that air is used as a dielectric?
 +  - What would be the limit value of the capacity, when the inner radius of the outer sphere is going to infinity ($r_{ \rm o} \rightarrow \infty$)?
 +<button size="xs" type="link" collapse="Loesung_1_5_4_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_1_5_4_Tipps" collapsed="true">
 +  * What is the displacement flux density of the inner sphere?
 +  * Out of this derive the strength of the electric field $E$
 +  * What ist the general relationship between $U$ and $\vec{E}$? Derive out of this the voltage between the spheres.
 +</collapse>
 +
 +<button size="xs" type="link" collapse="Loesung_1_5_4_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_1_5_4_Endergebnis" collapsed="true">
 +  - $C = 0.5~pF$ 
 +  - $C_{\infty} = 0.33~{ \rm pF}$
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +
 +<panel type="info" title="Task 1.5.5 Applying Gauss's law: Electric Field of a line charge"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +{{youtube>NyRjHj2uy6k}}
 +
 +</WRAP></WRAP></panel>
  
  
Zeile 757: Zeile 954:
 <callout> <callout>
  
-=== Goals ===+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
  
-  - know the two field-describing quantities of the electrostatic field +  - know the two field-describing quantities of the electrostatic field, 
-  - be able to describe and apply the relationship between these two quantities via the material law +  - describe and apply the relationship between these two quantities via the material law, 
-  - understand the effect of an electrostatic field on an insulator +  - understand the effect of an electrostatic field on an insulator, 
-  - know what the effect of dielectric polarisation does +  - know what the effect of dielectric polarization does, 
-  - be able to relate the term dielectric strength to a property of insulators and know what it means+  - relate the term dielectric strength to a property of insulators and know what it means
  
 </callout> </callout>
Zeile 772: Zeile 969:
  
 First of all, a thought experiment is to be carried out again (see <imgref ImgNr13>): First of all, a thought experiment is to be carried out again (see <imgref ImgNr13>):
-  - First a charged plate capacitor in vacuum is assumed, which is separated from the voltage source after charging.+  - Firsta charged plate capacitor in vacuum is assumed, which is separated from the voltage source after charging.
   - Next, the intermediate region is to be filled with a material.   - Next, the intermediate region is to be filled with a material.
  
Zeile 778: Zeile 975:
 <imgcaption ImgNr13 | Thought experiment: changing the material between the plates> <imgcaption ImgNr13 | Thought experiment: changing the material between the plates>
 </imgcaption> </imgcaption>
-{{drawio>ExperimentDielectric1}}+{{drawio>ExperimentDielectric1.svg}}
 </WRAP> </WRAP>
  
Zeile 784: Zeile 981:
 Why might which of the two quantities change? Why might which of the two quantities change?
  
-You may have considered what happens to the charge $Q$ on the plates. This charge cannot leave the plates. So $Q = \iint_{\text{closed surf.}} \vec{D} \cdot d \vec{A}$ cannot change. \\+You may have considered what happens to the charge $Q$ on the plates. This charge cannot escape the plates. So $Q = {\rlap{\Large \rlap{\int_A\int\, \LARGE \circ} \enspace \vec{D} \cdot {\rm d\vec{A}$ cannot change. \\
 Since the fictitious surface around an electrode does not change either, $\vec{D}$ cannot change either. Since the fictitious surface around an electrode does not change either, $\vec{D}$ cannot change either.
  
Zeile 790: Zeile 987:
 <imgcaption ImgNr14 | Thought experiment: changing the material between the plates> <imgcaption ImgNr14 | Thought experiment: changing the material between the plates>
 </imgcaption> </imgcaption>
-{{drawio>ExperimentDielectric2}}+{{drawio>ExperimentDielectric2.svg}}
 </WRAP> </WRAP>
  
Zeile 801: Zeile 998:
 \end{align*} \end{align*}
  
-The determined change is packed into the material constant $\varepsilon_r$. This gives the **material law of electrostatics**:+The determined change is packed into the material constant $\varepsilon_{ \rm r}$. This gives the **material law of electrostatics**:
  
 \begin{align*} \begin{align*}
-\boxed{D = \varepsilon_r \cdot \varepsilon_0 \cdot E}+\boxed{D = \varepsilon_{ \rm r} \cdot \varepsilon_0 \cdot E}
 \end{align*} \end{align*}
  
-Since the charge $Q$ cannot vanish from the capacitor in this experimental setup and thus $D$ remains constant, the $E$ field must become smaller for $\varepsilon_r>1$.+Since the charge $Q$ cannot vanish from the capacitor in this experimental setup and thus $D$ remains constant, the $E$ field must become smaller for $\varepsilon_{ \rm r} > 1$.
  
 <imgref ImgNr14> is drawn here in a simplified way: the alignable molecules are evenly distributed over the material and are thus also evenly aligned. Accordingly, the E-field is uniformly attenuated. <imgref ImgNr14> is drawn here in a simplified way: the alignable molecules are evenly distributed over the material and are thus also evenly aligned. Accordingly, the E-field is uniformly attenuated.
Zeile 813: Zeile 1010:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
 <callout icon="fa fa-exclamation" color="red" title="Note:"> <callout icon="fa fa-exclamation" color="red" title="Note:">
-  - The material constant $\varepsilon_r$ is called relative permittivity, relative permittivity, or dielectric constant.+  - The material constant $\varepsilon_{ \rm r}$ is referred to as relative permittivity, relative permittivity, or dielectric constant.
   - Relative permittivity is unitless and indicates how much the electric field decreases with the presence of material for the same charge.   - Relative permittivity is unitless and indicates how much the electric field decreases with the presence of material for the same charge.
-  - The relative permittivity $\varepsilon_r$ is always greater than or equal to 1 for dielectrics (i.e., nonconductors). +  - The relative permittivity $\varepsilon_{ \rm r}$ is always greater than or equal to 1 for dielectrics (i.e., nonconductors). 
-  - The relative permittivity depends on the polarizability of the material, i.e. the possibility to align the molecules in the field. Correspondingly, relative permittivity depends on frequency and often direction and temperature.+  - The relative permittivity depends on the polarizability of the material, i.e. the possibility of aligning the molecules in the field. Correspondingly, relative permittivity depends on the frequency and often direction and temperature.
 </callout> </callout>
  
 <callout icon="fa fa-info" color="grey" title="Outlook"> <callout icon="fa fa-info" color="grey" title="Outlook">
  
-If now the relative permittivity $\varepsilon_r$ depends on the possibility to align the molecules in the field, the following interesting relation arises: if frequencies are "caught", at which the oscillation of the molecule can build up, the energy of the external field is absorbed by the molecule. This build-up is similar to the shattering of a wine glass at a suitable irradiated frequency and is called resonance. Materials can be analysed on the basis of the resonance frequencies. These resonance frequencies are enormously high (1 GHz to 1'000'000 GHz) and in these frequencies the $E$-field detaches from the conductor. This may sound strange, but it becomes a bit more illustrative in the 2nd semester with the resonant circuit. For the 1st semester it is more than sufficient that in the range of 1'000'000 GHz is the visual light, which is obviously not bound to a conductor. But this also makes clear that the relative permittivity $\varepsilon_r$ for high frequencies also has to do with the absorption (and reflection) of electromagnetic waves.+Suppose now the relative permittivity $\varepsilon_{ \rm r}$ depends on the possibility of aligning the molecules in the field. In that case, the following interesting relation arises: if frequencies are "caught", at which the oscillation of the molecule can build up, the energy of the external field is absorbed by the molecule. This build-up is similar to the shattering of a wine glass at a suitable irradiated frequency and is referred to as resonance. Materials can be analyzed based on the resonance frequencies. These resonance frequencies are enormously high ($~{ \rm GHz}$ to $1'000'000 ~{ \rm GHz}$) and in these frequenciesthe $E$-field detaches from the conductor. This may sound strange, but it becomes a bit more illustrative with the resonant circuits in the next chapters. For here it is more than sufficient that in the range of $1'000'000 ~{ \rm GHz}$ is the visual light, which is obviously not bound to a conductor. But this also makes clear that the relative permittivity $\varepsilon_{ \rm r}$ for high frequencies also has to do with the absorption (and reflection) of electromagnetic waves.
  
 </callout> </callout>
Zeile 828: Zeile 1025:
  
 <tabcaption tab01| relative permittivity> <tabcaption tab01| relative permittivity>
-^ material^ relative permittivity \\ $\varepsilon_r$ for low frequencies ^ +^ material               ^ relative permittivity \\ $\varepsilon_{ \rm r}$ for low frequencies ^ 
-| air | 1.0006 | +| air                    $\rm 1.0006$  
-| paper | 2| +| paper                  $\rm 2$       
-hard paper +PE, PP                 $\rm 2.3$     
-glass 6...8 +PS                     $\rm 2.5$     
-PE, PP 2,3 +hard paper             $\rm 5$       
-PS 2.+glass                  $\rm 6...8$   
-| water (20°C) | 80 |+| water ($20~°{ \rm C}$) | $\rm 80$      |
 </tabcaption> </tabcaption>
 </WRAP> </WRAP>
  
-Some values of the relative permittivity $\varepsilon_r$ for dielectrics are given in <tabref tab01>.+Some values of the relative permittivity $\varepsilon_{ \rm r}$ for dielectrics are given in <tabref tab01>.
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 847: Zeile 1044:
   * The dielectrics act as insulators. The flow of current is therefore prevented   * The dielectrics act as insulators. The flow of current is therefore prevented
   * The ability to insulate is dependent on the material.   * The ability to insulate is dependent on the material.
-  * If a maximum electric field $E_0$ is exceeded, the insulating ability is eliminated +  * If a maximum electric field $E_0$ is exceeded, the insulating ability is eliminated. 
-    * One says: The insulator breaks down. This means that above this electric field a current can flow through the insulator.+    * One says: The insulator breaks down. This means that above this electric fielda current can flow through the insulator.
     * Examples are: Lightning in a thunderstorm, ignition spark, glow lamp in a {{wp>Test_light#One-contact_neon_test_lights|phase tester}}     * Examples are: Lightning in a thunderstorm, ignition spark, glow lamp in a {{wp>Test_light#One-contact_neon_test_lights|phase tester}}
-    * The maximum electric field $E_0$ is called ** dielectric strength** (in German: Durchschlagfestigkeit or Durchbruchfeldstärke).+    * The maximum electric field $E_0$ is referred to as ** dielectric strength** (in German: //Durchschlagfestigkeit// or //Durchbruchfeldstärke//).
     * $E_0$ depends on the material (see <tabref tab02>), but also on other factors (temperature, humidity, ...).     * $E_0$ depends on the material (see <tabref tab02>), but also on other factors (temperature, humidity, ...).
  
 <WRAP 30em> <WRAP 30em>
 <tabcaption tab02| Dielectric strength> <tabcaption tab02| Dielectric strength>
-^ Material^ Dielectric strength $E_0$ in kV/mm ^ +^ Material        ^ Dielectric strength $E_0$ in ${ \rm kV/mm}$ 
-| air | 0.1...0.3 | +| air             $\rm 0.1...0.3$  
-| SF6 gas| 8 | +| SF6 gas         $\rm 8$          
-vacuum20...30| +insulating oils $\rm 5...30$     
-insulating oils5...30| +vacuum          $\rm 20...30$    
-| quartz| 30...40 | +| quartz          $\rm 30...40$    
-| PP,PE | 50 | +| PP, PE          $\rm 50$         
-| PS | 100 | +| PS              $\rm 100$        
-| distilled water | 70 |+| distilled water | $\rm 70$         |
 </tabcaption> </tabcaption>
 </WRAP> </WRAP>
Zeile 880: Zeile 1077:
 <callout> <callout>
  
-=== Goals ===+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
  
-  - know what a capacitor is and how capacitance is defined +  - know what a capacitor is and how capacitance is defined, 
-  - know the basic equations for calculating a capacitance and be able to apply them +  - know the basic equations for calculating a capacitance and be able to apply them, 
-  - be able to imagine a plate capacitor and know examples of its use You also have an idea of what a cylindrical or spherical capacitor looks like and what examples of its use there are +  - imagine a plate capacitor and know examples of its useYou also have an idea of what a cylindrical or spherical capacitor looks like and what examples of its use there are, 
-  - know the characteristics of the E-field, D-field and electric potential in the three types of capacitors presented here+  - know the characteristics of the E-field, D-fieldand electric potential in the three types of capacitors presented here
  
 </callout> </callout>
Zeile 897: Zeile 1094:
   * This makes it possible to build up an electric field in the capacitor without charge carriers moving through the dielectric.   * This makes it possible to build up an electric field in the capacitor without charge carriers moving through the dielectric.
   * The characteristic of the capacitor is the capacitance $C$.   * The characteristic of the capacitor is the capacitance $C$.
-  * In addition to the capacitance, every capacitor also has resistance and an inductance. However, both of these are usually very small.+  * In addition to the capacitance, every capacitor also has resistance and an inductance. However, both of these are usually very small.
   * Examples are   * Examples are
     * the electrical component "capacitor",     * the electrical component "capacitor",
Zeile 906: Zeile 1103:
  
 The capacitance $C$ can be derived as follows: The capacitance $C$ can be derived as follows:
-  - It is known that $U = \int \vec{E} d \vec{s} = E \cdot l$ and hence $E= {{U}\over{l}}$ or $D= \varepsilon_0 \cdot \varepsilon_r \cdot {{U}\over{l}}$. +  - It is known that $U = \int \vec{E} {\rm d\vec{s} = E \cdot l$ and hence $E= {{U}\over{l}}$ or $D= \varepsilon_0 \cdot \varepsilon_{ \rm r} \cdot {{U}\over{l}}$. 
-  - Furthermore, $\iint_{\text{closed surf.}} \vec{D} \cdot d \vec{A} = Q$ by the idealized form of the plate capacitor: $Q=D \cdot A$. +  - Furthermore, ${\rlap{\Large \rlap{\int_A\int\, \LARGE \circ} \; \vec{D} \cdot {\rm d\vec{A} = Q$ by the idealized form of the plate capacitor: $Q=D \cdot A$. 
-  - Thus, the charge $Q$ is given by: \begin{align*} Q = \varepsilon_0 \cdot \varepsilon_r \cdot {{U}\over{l}} \cdot A \end{align*} +  - Thus, the charge $Q$ is given by: \begin{align*} Q = \varepsilon_0 \cdot \varepsilon_{ \rm r} \cdot {{U}\over{l}} \cdot A \end{align*} 
-  - This means that $Q \sim U$, given the geometry (i.e., $A$ and $d$) and the dielectric ($\varepsilon_r $).+  - This means that $Q \sim U$, given the geometry (i.e., $A$ and $d$) and the dielectric ($\varepsilon_{ \rm r} $).
   - So it is reasonable to determine a proportionality factor ${{Q}\over{U}}$.   - So it is reasonable to determine a proportionality factor ${{Q}\over{U}}$.
  
Zeile 915: Zeile 1112:
  
 \begin{align*} \begin{align*}
-\boxed{C = \varepsilon_0 \cdot \varepsilon_r \cdot {{A}\over{l}} =  {{Q}\over{U}}}+\boxed{C = \varepsilon_0 \cdot \varepsilon_{ \rm r} \cdot {{A}\over{l}} =  {{Q}\over{U}}}
 \end{align*} \end{align*}
 +
 +Some of the main results here are:
 +  * The capacity can be increased by increasing the dielectric constant $\varepsilon_{ \rm r} $, given the the same geometry.
 +  * As near together the plates are as higher the capacity will be. 
 +  * As larger the area as higher the capacity will be.
 +
 +The background behind the dielectric constant $\varepsilon_{ \rm r} $ and the field is explained in the following video
 +{{youtube>rkntp3_cZl4}}
 +
  
 This relationship can be examined in more detail in the following simulation: This relationship can be examined in more detail in the following simulation:
  
--->capacitor lab#+--> Capacitor lab#
  
 If the simulation is not displayed optimally, [[https://phet.colorado.edu/sims/cheerpj/capacitor-lab/latest/capacitor-lab.html?simulation=capacitor-lab&locale=de|this link]] can be used. If the simulation is not displayed optimally, [[https://phet.colorado.edu/sims/cheerpj/capacitor-lab/latest/capacitor-lab.html?simulation=capacitor-lab&locale=de|this link]] can be used.
Zeile 928: Zeile 1134:
 <-- <--
  
-https://www.falstad.com/vector2de/vector2de.html?f=ChargedPlateDipole&fc=Floor%3A%20field%20magnitude&fl=Overlay%3A%20equipotentials&d=vectors&m=Mouse%20%3D%20Adjust%20Angle&st=20&vd=32&a1=63&a2=16&rx=77&ry=5&rz=107&zm=1.165+The <imgref ImgNr171> shows the topology of the electric field inside of a plate capacitor.
  
 +<WRAP>
 +<imgcaption ImgNr171 | Topological situation inside of a plate capacitor>
 +</imgcaption> <WRAP>
 +{{url>https://www.falstad.com/vector2de/vector2de.html?f=ChargedPlateDipole&fc=Floor%3A%20field%20magnitude&fl=Overlay%3A%20equipotentials&d=vectors&m=Mouse%20%3D%20Adjust%20Angle&st=20&vd=32&a1=63&a2=16&rx=77&ry=5&rz=107&zm=1.165 600,400 noborder}}
 +</WRAP></WRAP>
  
 ==== Designs and types of capacitors ==== ==== Designs and types of capacitors ====
  
-To calculate the capacitance of different designs, the definition equations of $\vec{D}$ and $\vec{E}$ are used. This can be viewed in detail e.g. in [[https://www.youtube.com/watch?v=6iQAgtikt5o|this video]]. \\ Based on the geometry, different equations result (see also <imgref ImgNr17>).+To calculate the capacitance of different designs, the definition equations of $\vec{D}$ and $\vec{E}$ are used. This can be viewed in detail e.g. in [[https://www.youtube.com/watch?v=kAXg1xMkR_4&ab_channel=PatrickKaploo|this video]]. \\ Based on the geometry, different equations result (see also <imgref ImgNr17>).
  
 <WRAP> <WRAP>
 <imgcaption ImgNr17 | geometry of capacitors> <imgcaption ImgNr17 | geometry of capacitors>
 </imgcaption> </imgcaption>
-{{drawio>GeometryCapacitors}}+{{drawio>GeometryCapacitors.svg}}
 </WRAP> </WRAP>
  
-^Shape of the Capacitor^Parameter^Equation for the Capacity^ +^Shape of the Capacitor^  Parameter                                                                             Equation for the Capacity  
-|plate capacitor| area $A$ of plate \\ distance $l$ between plates | \begin{align*}C = \varepsilon_0 \cdot \varepsilon_r \cdot {{A}\over{l}} \end{align*}| +|plate capacitor       | area $A$ of plate \\ distance $l$ between plates                                      | \begin{align*}C = \varepsilon_0 \cdot \varepsilon_{ \rm r} \cdot {{A}\over{l}} \end{align*}| 
-|cylinder capacitor |radius of outer conductor $R_o$ \\ radius of inner conductor $R_i$ \\ length $l$| \begin{align*}C = \varepsilon_0 \cdot \varepsilon_r \cdot 2\pi {{l}\over{ln \left({{R_o}\over{R_i}}\right)}} \end{align*}| +|cylinder capacitor    |radius of outer conductor $R_{ \rm o}$ \\ radius of inner conductor $R_{ \rm i}$ \\ length $l$       | \begin{align*}C = \varepsilon_0 \cdot \varepsilon_{ \rm r} \cdot 2\pi {{l}\over{{\rm ln\left({{R_{ \rm o}}\over{R_{ \rm i}}}\right)}} \end{align*}| 
-|spherical capacitor |radius of outer spherical conductor $R_o$ \\ radius of inner spherical conductor $R_i$| \begin{align*}C = \varepsilon_0 \cdot \varepsilon_r \cdot 4 \pi {{R_i \cdot R_o}\over{R_o R_i}} \end{align*}|+|spherical capacitor   |radius of outer spherical conductor $R_{ \rm o}$ \\ radius of inner spherical conductor $R_{ \rm i}$ | \begin{align*}C = \varepsilon_0 \cdot \varepsilon_{ \rm r} \cdot 4 \pi {{R_{ \rm i} \cdot R_{ \rm o}}\over{R_{ \rm o} R_{ \rm i}}} \end{align*} |
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 951: Zeile 1162:
 <imgcaption ImgNr16 | Structural shapes of Capacitors> <imgcaption ImgNr16 | Structural shapes of Capacitors>
 </imgcaption> </imgcaption>
-{{drawio>DesignsCapacitors}}+{{drawio>DesignsCapacitors.svg}}
 </WRAP> </WRAP>
  
Zeile 957: Zeile 1168:
   - **{{wp>variable_capacitor|rotary variable capacitor}}** (also variable capacitor or trim capacitor).   - **{{wp>variable_capacitor|rotary variable capacitor}}** (also variable capacitor or trim capacitor).
     - A variable capacitor consists of two sets of plates: a fixed set and a movable set (stator and rotor). These represent the two electrodes.     - A variable capacitor consists of two sets of plates: a fixed set and a movable set (stator and rotor). These represent the two electrodes.
-    - The movable set can be rotated radially into the fixed set. This covers a certain area $A$.+    - The movable set can be rotated radially into the fixed set. This covers a certain area of $A$.
     - The size of the area is increased by the number of plates. Nevertheless, only small capacities are possible because of the necessary distance.     - The size of the area is increased by the number of plates. Nevertheless, only small capacities are possible because of the necessary distance.
     - Air is usually used as the dielectric, occasionally small plastic or ceramic plates are used to increase the dielectric constant.     - Air is usually used as the dielectric, occasionally small plastic or ceramic plates are used to increase the dielectric constant.
Zeile 963: Zeile 1174:
     - In the multilayer capacitor, there are again two electrodes. Here, too, the area $A$ (and thus the capacitance $C$) is multiplied by the finger-shaped interlocking.     - In the multilayer capacitor, there are again two electrodes. Here, too, the area $A$ (and thus the capacitance $C$) is multiplied by the finger-shaped interlocking.
     - Ceramic is used here as the dielectric.     - Ceramic is used here as the dielectric.
-    - The multilayer ceramic capacitor is also called KerKo or MLCC.+    - The multilayer ceramic capacitor is also referred to as KerKo or MLCC.
     - The variant shown in (2) is an SMD variant (surface mound device).     - The variant shown in (2) is an SMD variant (surface mound device).
   - Disk capacitor   - Disk capacitor
-    - A ceramic is also used as dielectric for the disk capacitor. This is positioned as a round disc between two electrodes.+    - A ceramic is also used as dielectric for the disk capacitor. This is positioned as a round disc between two electrodes.
     - Disc capacitors are designed for higher voltages, but have a low capacitance (in the microfarad range).     - Disc capacitors are designed for higher voltages, but have a low capacitance (in the microfarad range).
-  - **{{wp>Electrolytic capacitor}}**, in German also called Elko for __El__ektrolyt__ko__ndensator+  - **{{wp>Electrolytic capacitor}}**, in German also referred to as  //Elko// for //__El__ektrolyt__ko__ndensator//
     - In electrolytic capacitors, the dielectric is an oxide layer formed on the metallic electrode. the second electrode is the liquid or solid electrolyte.     - In electrolytic capacitors, the dielectric is an oxide layer formed on the metallic electrode. the second electrode is the liquid or solid electrolyte.
-    - Different metals can be used as the oxidized electrode, e.g. aluminium, tantalum or niobium.+    - Different metals can be used as the oxidized electrode, e.g. aluminum, tantalum or niobium.
     - Because the oxide layer is very thin, a very high capacitance results (depending on the size: up to a few millifarads).     - Because the oxide layer is very thin, a very high capacitance results (depending on the size: up to a few millifarads).
     - Important for the application is that it is a polarized capacitor. I.e. it may only be operated in one direction with DC voltage. Otherwise, a current can flow through the capacitor, which destroys it and is usually accompanied by an explosive expansion of the electrolyte. To avoid reverse polarity, the negative pole is marked with a dash.     - Important for the application is that it is a polarized capacitor. I.e. it may only be operated in one direction with DC voltage. Otherwise, a current can flow through the capacitor, which destroys it and is usually accompanied by an explosive expansion of the electrolyte. To avoid reverse polarity, the negative pole is marked with a dash.
-    - The electrolytic capacitor is built up wound and often has a cross-shaped predetermined breaking point at the top for gas leakage. +    - The electrolytic capacitor is built up wrapped and often has a cross-shaped predetermined breaking point at the top for gas leakage. 
-  - **{{wp>film capacitor}}**, in German also called Folko, for __Fol__ien__ko__ndensator. +  - **{{wp>film capacitor}}**, in German also referred to as  //Folko//, for //__Fol__ien__ko__ndensator//
-    - A material similar to a "chip bag" is used as an insulator: a plastic film with a thin, metallized layer.+    - A material similar to a "chip bag" is used as an insulator: a plastic film with a thin, metalized layer.
     - The construction shows a high pulse load capacitance and low internal ohmic losses.     - The construction shows a high pulse load capacitance and low internal ohmic losses.
-    - In the event of electrical breakdown, the foil enables "self-healing": the metal coating evaporates locally around the breakdown. Thus the short-circuit is cancelled again +    - In the event of electrical breakdown, the foil enables "self-healing": the metal coating evaporates locally around the breakdown. Thus the short-circuit is canceled again. 
-    - With some manufacturers this type is called MKS (__M__metallized foil__c__capacitor, Polye__s__ter).+    - With some manufacturersthis type is referred to as  MKS (__M__metallized foil__c__capacitor, Polye__s__ter).
   - **{{wp>Supercapacitor}}** (engl. Super-Caps)   - **{{wp>Supercapacitor}}** (engl. Super-Caps)
     - As a dielectric is - similar to the electrolytic capacitor - very thin. In the actual sense, there is no dielectric at all.     - As a dielectric is - similar to the electrolytic capacitor - very thin. In the actual sense, there is no dielectric at all.
     - The charges are not only stored in the electrode, but - similar to a battery - the charges are transferred into the electrolyte. Due to the polarization of the charges, they surround themselves with a thin (atomic) electrolyte layer. The charges then accumulate at the other electrode.     - The charges are not only stored in the electrode, but - similar to a battery - the charges are transferred into the electrolyte. Due to the polarization of the charges, they surround themselves with a thin (atomic) electrolyte layer. The charges then accumulate at the other electrode.
-    - Supercapacitors can achieve very large capacitance values (up to the kilofarad range), but only have a low maximum voltage+    - Supercapacitors can achieve very large capacitance values (up to the Kilofarad range), but only have a low maximum voltage
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 994: Zeile 1205:
 In <imgref ImgNr17> are shown different capacitors: In <imgref ImgNr17> are shown different capacitors:
   - Above two SMD capacitors   - Above two SMD capacitors
-    - On the left a $100\mu F$ electrolytic capacitor +    - On the left a $100~{ \rm µF}$ electrolytic capacitor 
-    - On the right a $100nF$ MLCC in the commonly used {{wp>Surface-mount_technology#Packages}} 0603 (1.6mm x 0.8mm)+    - On the right a $100~{ \rm nF}$ MLCC in the commonly used {{wp>Surface-mount_technology#Packages}} 0603 ($1.6~{ \rm mm}$ $0.8~{ \rm mm}$)
   - below different THT capacitors (__T__hrough __H__ole __T__echnology)   - below different THT capacitors (__T__hrough __H__ole __T__echnology)
-    - a big electrolytic capacitor with $10mF$ in blue, the positive terminal is marked with $+$ +    - a big electrolytic capacitor with $10~{ \rm mF}$ in blue, the positive terminal is marked with $+$ 
-    - in the second row is a Kerko with $33pF$ and two Folkos with $1,5\mu F$ each +    - in the second row is a Kerko with $33~{ \rm pF}$ and two Folkos with $1,5~{ \rm µF}$ each 
-    - in the bottom row you can see a trim capacitor with about $30pF$ and a tantalum electrolytic capacitor and another electrolytic capacitor +    - in the bottom row you can see a trim capacitor with about $30~{ \rm pF}$ and a tantalum electrolytic capacitor and another electrolytic capacitor 
-Various conventions]] have been established for designating the capacitance value of a capacitor [[https://www.elektronik-kompendium.de/sites/bau/1109061.htm|various conventions]].+Various conventions have been established for designating the capacitance value of a capacitor [[https://www.eit.edu.au/resources/different-types-of-capacitors/|various conventions]].
  
 \\ \\ \\ \\
Zeile 1006: Zeile 1217:
 Electrolytic capacitors can explode! Electrolytic capacitors can explode!
  
-{{youtube>IMpj1R3we_U}}+{{youtube>sW0a9d_vWoc}}
 </WRAP> </WRAP>
  
 <callout icon="fa fa-exclamation" color="red" title="Note:"> <callout icon="fa fa-exclamation" color="red" title="Note:">
-  - There are polarized capacitors. With these, the installation direction and current flow must be observed, as otherwise an explosion can occur. +  - There are polarized capacitors. With these, the installation direction and current flow must be observed, as otherwisean explosion can occur. 
-  - Depending on the application - and the required size, dielectric strength and capacitance - different types of capacitors are used. +  - Depending on the application - and the required size, dielectric strengthand capacitance - different types of capacitors are used. 
-  - The calculation of the capacitance is usually __not__ via $C = \varepsilon_0 \cdot \varepsilon_r \cdot {{A}\over{l}} $ . The capacitance value is given. +  - The calculation of the capacitance is usually __not__ via $C = \varepsilon_0 \cdot \varepsilon_{ \rm r} \cdot {{A}\over{l}} $ . The capacitance value is given. 
-  - The capacitance value often varies by more than $\pm 10\%$. I.e. a calculation accurate to several decimal places is rarely necessary/possible.+  - The capacitance value often varies by more than $\pm 10~{ \rm \%}$. I.e. a calculation accurate to several decimal places is rarely necessary/possible.
  
   - The charge current seems to be able to flow through the capacitor because the charges added to one side induce correspondingly opposite charges on the other side.   - The charge current seems to be able to flow through the capacitor because the charges added to one side induce correspondingly opposite charges on the other side.
Zeile 1026: Zeile 1237:
 <callout> <callout>
  
-=== Goals ===+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
  
-  - be able to recognise a series connection of capacitors and distinguish it from a parallel connection +  - recognize a series connection of capacitors and distinguish it from a parallel connection, 
-  - be able to calculate the resulting total capacitance of a series or parallel circuit +  - calculate the resulting total capacitance of a series or parallel circuit, 
-  - know how the total charge is distributed among the individual capacitors in a parallel circuit +  - know how the total charge is distributed among the individual capacitors in a parallel circuit, 
-  - be able to determine the voltage across a single capacitor in a series circuit+  - determine the voltage across a single capacitor in a series circuit.
  
 </callout> </callout>
Zeile 1045: Zeile 1256:
 \end{align*} \end{align*}
  
-Furthermore, after charging, a voltage is formed across the series circuit which corresponds to the source voltage $U_q$. This results from the addition of the partial voltages across the individual capacitors.+Furthermore, after charging, a voltage is formed across the series circuit which corresponds to the source voltage $U_q$. This results from the addition of partial voltages across the individual capacitors.
 \begin{align*} \begin{align*}
 U_q = U_1 + U_2 + ... + U_n = \sum_{k=1}^n U_k U_q = U_1 + U_2 + ... + U_n = \sum_{k=1}^n U_k
Zeile 1056: Zeile 1267:
 U_q &= &U_1 &+ &U_2 &+ &... &+ &U_n &= \sum_{k=1}^n U_k \\ U_q &= &U_1 &+ &U_2 &+ &... &+ &U_n &= \sum_{k=1}^n U_k \\
 U_q &= &{{\Delta Q}\over{C_1}} &+ &{{\Delta Q}\over{C_2}} &+ &... &+ &{{\Delta Q}\over{C_3}} &= \sum_{k=1}^n {{1}\over{C_k}}\cdot \Delta Q \\ U_q &= &{{\Delta Q}\over{C_1}} &+ &{{\Delta Q}\over{C_2}} &+ &... &+ &{{\Delta Q}\over{C_3}} &= \sum_{k=1}^n {{1}\over{C_k}}\cdot \Delta Q \\
-{{1}\over{C_{ges}}}\cdot \Delta Q &= &&&&&&&&\sum_{k=1}^n {{1}\over{C_k}}\cdot \Delta Q+{{1}\over{C_{ \rm eq}}}\cdot \Delta Q &= &&&&&&&&\sum_{k=1}^n {{1}\over{C_k}}\cdot \Delta Q
 \end{align*} \end{align*}
  
Zeile 1062: Zeile 1273:
  
 \begin{align*} \begin{align*}
-\boxed{ {{1}\over{C_{ges}}} = \sum_{k=1}^n {{1}\over{C_k}} } +\boxed{ {{1}\over{C_{ \rm eq}}} = \sum_{k=1}^n {{1}\over{C_k}} } 
 \end{align*} \end{align*}
 \begin{align*} \begin{align*}
-\boxed{ \Delta Q_k = const.} +\boxed{ \Delta Q_k = {\rm const.}
 \end{align*} \end{align*}
  
Zeile 1073: Zeile 1284:
 \end{align*} \end{align*}
 \begin{align*} \begin{align*}
-\boxed{U_{ges} \cdot C_{ges} = U_{k} \cdot C_{k} }+\boxed{U_{ \rm eq} \cdot C_{ \rm eq} = U_{k} \cdot C_{k} }
 \end{align*} \end{align*}
  
-In the simulation below, besides the parallel connected capacitors $C_1$, $C_2$,$C_3$, an ideal voltage source $U_q$, a resistor $R$, a switch $S$ and a lamp are installed.+In the simulation below, besides the parallel connected capacitors $C_1$, $C_2$,$C_3$, an ideal voltage source $U_q$, a resistor $R$, a switch $S$and a lamp are installed.
   * The switch $S$ allows the voltage source to charge the capacitors.   * The switch $S$ allows the voltage source to charge the capacitors.
   * The resistor $R$ is necessary because the simulation cannot represent instantaneous charging. The resistor limits the charging current to a maximum value. \\ This leads to the DC circuit transients, explained in the  [[electrical_engineering_1:dc_circuit_transients#time_course_of_the_charging_and_discharging_process|last semester]].   * The resistor $R$ is necessary because the simulation cannot represent instantaneous charging. The resistor limits the charging current to a maximum value. \\ This leads to the DC circuit transients, explained in the  [[electrical_engineering_1:dc_circuit_transients#time_course_of_the_charging_and_discharging_process|last semester]].
Zeile 1107: Zeile 1318:
 \Delta Q &= & Q_1 &+ & Q_2 &+ &... &+ & Q_n & \sum_{k=1}^n Q_k \\ \Delta Q &= & Q_1 &+ & Q_2 &+ &... &+ & Q_n & \sum_{k=1}^n Q_k \\
 \Delta Q &= &C_1 \cdot U &+ &C_2 \cdot U &+ &... &+ &C_n \cdot U & \sum_{k=1}^n C_k \cdot U \\ \Delta Q &= &C_1 \cdot U &+ &C_2 \cdot U &+ &... &+ &C_n \cdot U & \sum_{k=1}^n C_k \cdot U \\
-C_{ges} \cdot U &= &&&&&&&& \sum_{k=1}^n C_k \cdot U \\+C_{ \rm eq} \cdot U &= &&&&&&&& \sum_{k=1}^n C_k \cdot U \\
 \end{align*} \end{align*}
  
Zeile 1113: Zeile 1324:
 <WRAP> <WRAP>
 \begin{align*} \begin{align*}
-\boxed{ C_{ges} = \sum_{k=1}^n C_k }+\boxed{ C_{ \rm eq} = \sum_{k=1}^n C_k }
 \end{align*} \end{align*}
 \begin{align*} \begin{align*}
-\boxed{ U_k = const}+\boxed{ U_k = {\rm const.}}
 \end{align*} \end{align*}
 </WRAP> </WRAP>
Zeile 1126: Zeile 1337:
  
 \begin{align*} \begin{align*}
-\boxed{ {{Q_k}\over{C_k}} = {{\Delta Q}\over{C_{ges}}} }+\boxed{ {{Q_k}\over{C_k}} = {{\Delta Q}\over{C_{ \rm eq}}} }
 \end{align*} \end{align*}
  
-In the simulation below, again besides the parallel connected capacitors $C_1$, $C_2$,$C_3$, an ideal voltage source $U_q$, a resistor $R$, a switch $S$ and a lamp are installed.+In the simulation below, again besides the parallel connected capacitors $C_1$, $C_2$,$C_3$, an ideal voltage source $U_q$, a resistor $R$, a switch $S$and a lamp are installed.
  
 This derivation is also well explained, for example, in [[https://www.youtube.com/watch?v=fH-9pUeEpZU|this video]]. This derivation is also well explained, for example, in [[https://www.youtube.com/watch?v=fH-9pUeEpZU|this video]].
Zeile 1145: Zeile 1356:
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-=====1.9 Dielectrics Configurations =====+=====1.9 Configurations of multiple Dielectrics =====
  
 <callout> <callout>
  
-=== Goals ===+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
  
-  - be able to recognise a stratification of dielectrics and distinguish between a transverse stratification and a longitudinal stratification +  - recognize the different layering of dielectrics and distinguish between a normal (perpendicular) and a tangential (lateral) layering 
-  - know which quantity remains constant in the case of perpendicular layers +  - know which quantity remains constant for the different layerings 
-  - know the constant quantity for a lateral layers as well +  - be familiar with the equivalent circuits for normal and tangential layering 
-  - be familiar with the equivalent circuits for perpendicular and lateral layering +  - calculate the total capacitance of a capacitor with layering
-  - be able to calculate the total capacitance of a capacitor with stratification+
   - know the law of refraction at interfaces for the field lines in the electrostatic field.   - know the law of refraction at interfaces for the field lines in the electrostatic field.
  
Zeile 1163: Zeile 1373:
  
  
-Up to now was assumed only one dielectricum responly vacuum within capacitor. Now is looked at more detailed, how multi-layered construction between sheets affects capacity.  +Up until this point, it was assumed that the capacitor contained only vacuum and one dielectricWe now examine the impact of multi-layered construction between sheets on capacity in more detail
-Thereby several dielectrics build boundary layers between each otherDifferent variants can be distinguished (<imgref ImgNr18>): +By doing this, various dielectrics create boundary layers between one anotherThis terminology will be covered in more detail because it can occasionally be misleading. 
-  - **perpendicular layering**: There are different dielectrics perpendicular to the field lines. \\ Thus, the boundary layers are parallel to the capacitor plates+It is possible to tell the following variations apart  (<imgref ImgNr18>). \\ 
-  - **lateral layering**: There are different dielectrics parallel to the field lines. \\ So the boundary layers are perpendicular to the capacitor plates+ 
-  - **arbitrary configuration**: The boundary layers are neither parallel nor perpendicular to the capacitor plates.+  - **layers are parallel to capacitor plates - dielectrics in series**: \\ The boundary layers are __parallel__ to the capacitor plates. \\ So, the different dielectrics are __perpendicular__ to the field lines\\ \\ 
 +  - **layers are perpendicular to capacitor plates - dielectrics in parallel**: \\ The boundary layers are __perpendicular__ to the capacitor plates. \\ Sothe different dielectrics are __parallel__ to the field lines \\ \\ 
 +  - **arbitrary configuration**: \\ The boundary layers are neither parallel nor perpendicular to the capacitor plates.
  
 <WRAP> <WRAP>
-<imgcaption ImgNr18 | Types of stratification in capacitors>+<imgcaption ImgNr18 | Types of layering in capacitors>
 </imgcaption> </imgcaption>
-{{drawio>LayeringCapacitors}}+{{drawio>LayeringCapacitors.svg}}
 </WRAP> </WRAP>
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-==== Lateral Configuartion ====+==== Dielectrics in Series ====
  
 First, the situation is considered that the boundary layers are parallel to the electrode surfaces. A voltage $U$ is applied to the structure from the outside. \\ First, the situation is considered that the boundary layers are parallel to the electrode surfaces. A voltage $U$ is applied to the structure from the outside. \\
  
 <WRAP 40em> <WRAP 40em>
-<imgcaption ImgNr19 | cross-layered capacitor>+<imgcaption ImgNr19 | Dielectrics in Series Layers parallel to Capacitor Plates>
 </imgcaption> </imgcaption>
-{{drawio>crosslayeredcapacitor}} +{{drawio>crosslayeredcapacitor.svg}} 
-</WRAP>+</WRAP> 
  
-The layering is now parallel to equipotential surfaces. In particular, the boundary layers are then also equipotential surfaces. \\+The layering is here parallel to the equipotential surfaces of the plate capacitor. In particular, the boundary layers are then also equipotential surfaces. \\
 The boundary layers can be replaced by an infinitesimally thin conductor layer (metal foil). The voltage $U$ can then be divided into several partial areas: The boundary layers can be replaced by an infinitesimally thin conductor layer (metal foil). The voltage $U$ can then be divided into several partial areas:
  
 \begin{align*} \begin{align*}
-U = \int \limits_{total \, inner \\ volume} \! \! \vec{E} \cdot d \vec{s} = E_1 \cdot d_1 + E_2 \cdot d_2 + E_3 \cdot d_3+U = \int \limits_{\rm path \, inside \\ the \, capacitor} \! \! \vec{E} \cdot {\rm d\vec{s} = E_1 \cdot d_1 + E_2 \cdot d_2 + E_3 \cdot d_3
 \tag{1.9.1} \tag{1.9.1}
 \end{align*} \end{align*}
Zeile 1198: Zeile 1410:
  
 \begin{align*} \begin{align*}
-Q = \iint_{A} \vec{D} \cdot d \vec{A} = const.+Q = \iint_{A} \vec{D} \cdot {\rm d\vec{A} = {\rm const.}
 \end{align*} \end{align*}
  
Zeile 1205: Zeile 1417:
 \begin{align*} \begin{align*}
 \vec{D_1} \cdot \vec{A} & = & \vec{D_2} \cdot \vec{A} & = & \vec{D_3} \cdot \vec{A} & \quad \quad \quad  & | \:\: \vec{D_k} & \parallel \vec{A} \\ \vec{D_1} \cdot \vec{A} & = & \vec{D_2} \cdot \vec{A} & = & \vec{D_3} \cdot \vec{A} & \quad \quad \quad  & | \:\: \vec{D_k} & \parallel \vec{A} \\
-     D_1  \cdot      A  & = &     D_2  \cdot      A   & = & D_3  \cdot      A       & \quad \quad \quad  & | \:\: A & = const. \\ +     D_1  \cdot      A  & = &     D_2  \cdot      A   & = & D_3  \cdot      A       & \quad \quad \quad  & | \:\: A & = {\rm const.\\ 
-     D_1                & = &     D_2                 & = & D_3                     & \quad \quad \quad  & | D_k & = \varepsilon_{rk} \varepsilon_0 \cdot E_k    \\ +     D_1                & = &     D_2                 & = & D_3                     & \quad \quad \quad  & | D_k & = \varepsilon_{ \rm rk} \varepsilon_0 \cdot E_k    \\ 
-     \varepsilon_{r1} \varepsilon_0 \cdot E_1  & &\varepsilon_{r2} \varepsilon_0 \cdot E_2 &= &\varepsilon_{r3} \varepsilon_0 \cdot E_3      \\+     \varepsilon_{ \rm r1} \varepsilon_0 \cdot E_1  & &\varepsilon_{ \rm r2} \varepsilon_0 \cdot E_2 &= &\varepsilon_{ \rm r3} \varepsilon_0 \cdot E_3      \\
 \end{align*} \end{align*}
 \begin{align*} \begin{align*}
-\boxed{     \varepsilon_{r1}  \cdot E_1  =  \varepsilon_{r2}  \cdot E_2 = \varepsilon_{r3}  \cdot E_3           }+\boxed{     \varepsilon_{ \rm r1}  \cdot E_1  =  \varepsilon_{ \rm r2}  \cdot E_2 = \varepsilon_{ \rm r3}  \cdot E_3           }
 \tag{1.9.2} \tag{1.9.2}
 \end{align*} \end{align*}
Zeile 1216: Zeile 1428:
 Using $(1.9.1)$ and $(1.9.2)$ we can also derive the following relationship: Using $(1.9.1)$ and $(1.9.2)$ we can also derive the following relationship:
 \begin{align*} \begin{align*}
-E_2 = & {{\varepsilon_{r1}}\over{\varepsilon_{r2}}}\cdot E_1 , \quad E_3 = {{\varepsilon_{r1}}\over{\varepsilon_{r3}}}\cdot E_1 \\ +E_2 = & {{\varepsilon_{ \rm r1}}\over{\varepsilon_{ \rm r2}}}\cdot E_1 , \quad E_3 = {{\varepsilon_{ \rm r1}}\over{\varepsilon_{ \rm r3}}}\cdot E_1 \\ 
 \end{align*} \end{align*}
 \begin{align*} \begin{align*}
 U =  & E_1 \cdot d_1 + & E_2 & \cdot d_2 + & E_3 & \cdot d_3 \\ U =  & E_1 \cdot d_1 + & E_2 & \cdot d_2 + & E_3 & \cdot d_3 \\
-U =  & E_1 \cdot d_1 + & {{\varepsilon_{r1}}\over{\varepsilon_{r2}}}\cdot E_1 & \cdot d_2 + & {{\varepsilon_{r1}}\over{\varepsilon_{r3}}}\cdot E_1 & \cdot d_3 \\+U =  & E_1 \cdot d_1 + & {{\varepsilon_{ \rm r1}}\over{\varepsilon_{ \rm r2}}}\cdot E_1 & \cdot d_2 + & {{\varepsilon_{ \rm r1}}\over{\varepsilon_{ \rm r3}}}\cdot E_1 & \cdot d_3 \\
 \end{align*} \end{align*}
 \begin{align*} \begin{align*}
-U =  & E_1 \cdot (d_1 + {{\varepsilon_{r1}}\over{\varepsilon_{r2}}} \cdot d_2 + {{\varepsilon_{r1}}\over{\varepsilon_{r3}}}\cdot d_3 ) \\ +U =  & E_1 \cdot (d_1 + {{\varepsilon_{ \rm r1}}\over{\varepsilon_{ \rm r2}}} \cdot d_2 + {{\varepsilon_{ \rm r1}}\over{\varepsilon_{ \rm r3}}}\cdot d_3 ) \\ 
-E_1 = & {{U}\over{ d_1 + \large{{\varepsilon_{r1}}\over{\varepsilon_{r2}}} \cdot d_2 + \large{{\varepsilon_{r1}}\over{\varepsilon_{r3}}}\cdot d_3 }}+E_1 = & {{U}\over{ d_1 + \large{{\varepsilon_{ \rm r1}}\over{\varepsilon_{ \rm r2}}} \cdot d_2 + \large{{\varepsilon_{r1}}\over{\varepsilon_{ \rm r3}}}\cdot d_3 }}
 \end{align*} \end{align*}
 \begin{align*} \begin{align*}
-\boxed{ E_1 = {{U}\over{ \sum_{k=1}^n \large{{\varepsilon_{r1}}\over{\varepsilon_{rk}}} \cdot d_k}} } \quad \text{and} \; E_k = {{\varepsilon_{r1}}\over{\varepsilon_{rk}}}\cdot E_1 +\boxed{ E_1 = {{U}\over{ \sum_{k=1}^n \large{{\varepsilon_{ \rm r1}}\over{\varepsilon_{{ \rm r}k}}} \cdot d_k}} } \quad \text{and} \; E_k = {{\varepsilon_{ \rm r1}}\over{\varepsilon_{{ \rm r}k}}}\cdot E_1 
 \end{align*} \end{align*}
  
-The situation can also be transferred to a coaxial structure of a cylindrical capacitor or concentric structure of spherical capacitors.+<WRAP> 
 +<imgcaption ImgNr431 | Simulation of Dielectrics in series> 
 +</imgcaption> <WRAP> 
 +{{url>https://www.falstad.com/emstatic/EMStatic.html?rol=$+1+64+32+0+0+159+0.078125+284%0Ab+0+3+4+-93+15+78+27+0%0Ab+0+2+-1000+-156+49+96+66+0%0Ab+0+2+1000+-153+-3+99+14+0%0Ab+0+3+1.5+-92+28+79+40+0%0A 600,600 noborder}} 
 +</WRAP></WRAP> 
 + 
 +The situation can also be transferred to a coaxial structure of a cylindrical capacitor or the concentric structure of spherical capacitors.
  
 <callout icon="fa fa-exclamation" color="red" title="Note:"> <callout icon="fa fa-exclamation" color="red" title="Note:">
-Cross-stratification results in+Conclusions
-  - A perpendicular layering can be considered as a series connection of partial capacitors with respective thicknesses $d_k$ and dielectric constant $\varepsilon_{rk}$. +  - The layering parallel to the capacitor plates can be considered as a series connection of partial capacitors with respective thicknesses $d_k$ and dielectric constants $\varepsilon_{{ \rm r}k}$. 
-  - The flux density is constant in the capacitor +  - The flux density for dielectrics in series is constant everywhere the capacitor 
-  - Considering the fields __along the field line__ - that is, perpendicular to the interface, or the normal components $E_n$ and $D_nof the fields - the following holds: +  - We also found some results for the $E$ and $D$ fields __along the field line__. These parts of the fields which are perpendicular to the capacitor plates - are the normal components $E_{ \rm n}$ and $D_{ \rm n}$. 
-    - The normal component of the electric field $E_n$ changes abruptly at the interface. +    - The normal component of the electric field $E_{ \rm n}$ changes abruptly at the interface. 
-    - The normal component of the flux density $D_n$ is continuous at the interface: $D_{n1} = D_{n2}$+    - The normal component of the flux density $D_{ \rm n}$ is continuous at the interface: $D_{ \rm n1} = D_{ \rm n2}$
 </callout> </callout>
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-==== Perpendicular Configuartion ====+==== Dielectrics in Parallel ====
  
-Now the boundary layers should be perpendicular to the electrode surfaces. Again a voltage $U$ is applied to the structure from the outside.+Now the boundary layers should be perpendicular to the equipotential surfaces of the plate capacitor. Again a voltage $U$ is applied to the structure from the outside.
  
 <WRAP 40em> <WRAP 40em>
-<imgcaption ImgNr20 | longitudinal layered capacitor>+<imgcaption ImgNr20 | Dielectrics in parallel - Layers perpendicular to Capacitor Plates>
 </imgcaption> </imgcaption>
-{{drawio>longitudinallayeredcapacitor}}+{{drawio>longitudinallayeredcapacitor.svg}}
 </WRAP> </WRAP>
  
Zeile 1256: Zeile 1474:
  
 \begin{align*} \begin{align*}
-U = \int \limits_{total \, inner \\ volume} \! \! \vec{E} \cdot d \vec{s} = E_1 \cdot d = E_2 \cdot d = E_3 \cdot d+U = \int \limits_{\rm path \, inside \\ the \, capacitor} \! \! \vec{E} \cdot {\rm d\vec{s} = E_1 \cdot d = E_2 \cdot d = E_3 \cdot d
 \end{align*} \end{align*}
  
 Since $d$ is the same for all dielectrics, $\large{ E_1 = E_2 = E_3 = {{U}\over{d}} }$ Since $d$ is the same for all dielectrics, $\large{ E_1 = E_2 = E_3 = {{U}\over{d}} }$
  
-with the electric flux density $D_k = \varepsilon_{rk} \varepsilon_{0} \cdot E_k$ results:+with the electric flux density $D_k = \varepsilon_{{ \rm r}k} \varepsilon_{0} \cdot E_k$ results:
  
 \begin{align*} \begin{align*}
-{ { D_1 } \over { \varepsilon_{r1} } } = { { D_2 } \over { \varepsilon_{r2} } } = { { D_3 } \over { \varepsilon_{r3} } } = { { D_k } \over { \varepsilon_{rk} } }+{ { D_1 } \over { \varepsilon_{ \rm r1} } } = { { D_2 } \over { \varepsilon_{ \rm r2} } } = { { D_3 } \over { \varepsilon_{ \rm r3} } } = { { D_k } \over { \varepsilon_{{ \rm r}k} } }
 \end{align*} \end{align*}
  
 Since the electric flux density is just equal to the local surface charge density, the charge will no longer be uniformly distributed over the electrodes. \\ Since the electric flux density is just equal to the local surface charge density, the charge will no longer be uniformly distributed over the electrodes. \\
 Where a stronger polarization is possible, the $E$-field is damped in the dielectric. For a constant $E$-field, more charges must accumulate there. \\ Where a stronger polarization is possible, the $E$-field is damped in the dielectric. For a constant $E$-field, more charges must accumulate there. \\
-Concretely, more charges accumulate just around the dielectric constant $\varepsilon_{rk}$.+Thereforeas more charges accumulate as higher the dielectric constant $\varepsilon_{{ \rm r}k}$.
  
-This situation can also be transferred to a coaxial structure of a cylindrical capacitor or concentric structure of spherical capacitors.+ 
 +<WRAP> 
 +<imgcaption ImgNr431 | Simulation of lateral layering> 
 +</imgcaption> <WRAP> 
 +{{url>https://www.falstad.com/emstatic/EMStatic.html?rol=$+1+64+32+0+0+569+0.078125+393%0Ab+0+2+-5+-156+49+96+66+0%0Ab+0+2+5+-153+-4+99+13+0%0Ab+0+3+4+46+14+179+49+0%0Ab+0+3+2+20+14+46+49+0%0A 600,600 noborder}} 
 +</WRAP></WRAP> 
 + 
 +This situation can also be transferred to a coaxial structure of a cylindrical capacitor or the concentric structure of spherical capacitors.
  
 <callout icon="fa fa-exclamation" color="red" title="Note:"> <callout icon="fa fa-exclamation" color="red" title="Note:">
-In the case of longitudinal stratification, the result is+ 
-  - perpendicular configuration can be viewed as a parallel connection of partial capacitors with respective areas $A_k$ and dielectric constant $\varepsilon_{rk}$. +Conclusions
-  - The electric field in the capacitor is constant. +  - The layering perpendicular to the capacitor plates can be considered as a parallel connection of partial capacitors with respective areas $A_k$ and dielectric constant $\varepsilon_{{ \rm r}k}$. 
-  - Considering the fields __transverse to the field lines__ that is, perpendicular to the interface, or the tangential components $E_t$ and $D_tof the fields - the following holds: +  - The electric field for dielectrics in parallel is constant everywhere in the capacitor
-    - The tangential components of the flux density $D_t$ changes abruptly at the interface. +  - We also found some results for the $E$ and $D$ fields __perpendicular to the field line__. These parts of the fields which are parallel to the capacitor plates - are the tangential components $E_{ \rm t}$ and $D_{ \rm t}$. 
-    - The tangential components of the electric field $E_t$ is continuous at the interface: $E_{t1} = E_{t2}$+    - The tangential component of the flux density $D_{ \rm t}$ changes abruptly at the interface. 
 +    - The tangential component of the electric field $E_{ \rm t}$ is continuous at the interface: $E_{ \rm t1} = E_{ \rm t2}$ 
 </callout> </callout>
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-==== Arbitrary Configuartion ====+==== Arbitrary Configuration ====
  
 With arbitrary configuration, simple observations are no longer possible. \\ With arbitrary configuration, simple observations are no longer possible. \\
-However, some hints can be derived from the previous types of stratification:+However, some hints can be derived from the previous types of layering:
   * Electric field $\vec{E}$:   * Electric field $\vec{E}$:
-    * The normal component $E_{n}$ is discontinuous at the interface: $\varepsilon_{r1} \cdot E_{n1} = \varepsilon_{r2} \cdot E_{n2}$ +    * The normal component $E_{ \rm n}$ is discontinuous at the interface: $\varepsilon_{ \rm r1} \cdot E_{ \rm n1} = \varepsilon_{ \rm r2} \cdot E_{ \rm n2}$ 
-    * The tangential component $E_{t}$ is continuous at the interface: $ E_{t1} = E_{t2}$+    * The tangential component $E_{ \rm t}$ is continuous at the interface: $ E_{ \rm t1} = E_{ \rm t2}$
   * Electric displacement flux density $\vec{D}$:   * Electric displacement flux density $\vec{D}$:
-    * The normal component $D_{n}$ is continuous at the interface: $ D_{n1} = D_{n2}$ +    * The normal component $D_{ \rm n}$ is continuous at the interface: $ D_{ \rm n1} = D_{ \rm n2}$ 
-    * The tangent component $D_{t}$ is discontinuous at the interface: $  {{1}\over \Large{\varepsilon_{r1}}}\cdot D_{t1} =  {{1}\over \Large{\varepsilon_{r2}}} \cdot D_{t1} $+    * The tangential component $D_{ \rm t}$ is discontinuous at the interface: $  {{1}\over \Large{\varepsilon_{ \rm r1}}}\cdot D_{ \rm t1} =  {{1}\over \Large{\varepsilon_{ \rm r2}}} \cdot D_{ \rm t2} $
  
 <WRAP 30em> <WRAP 30em>
 <imgcaption ImgNr21 | arbitrary layered capacitor> <imgcaption ImgNr21 | arbitrary layered capacitor>
 </imgcaption> </imgcaption>
-{{drawio>arblayeredcapacitor}}+{{drawio>arblayeredcapacitor.svg}}
 </WRAP> </WRAP>
  
-Since $\vec{D} = \varepsilon_{0} \varepsilon_{r} \cdot \vec{E}$ the direction of the fields must be the same. \\+<WRAP> 
 +<imgcaption ImgNr731 | arbitrary configuration> 
 +</imgcaption> <WRAP> 
 +{{url>https://www.falstad.com/emstatic/EMStatic.html?rol=$+1+64+32+0+10+575+0.078125+393%0Ab+0+2+-5+-156+49+96+66+0%0Ab+0+2+5+-153+-4+99+13+0%0Ab+0+3+4+-20+14+91+20+0%0Ab+0+3+4+1+20+75+21+0%0Ab+0+3+4+5+20+75+22+0%0Ab+0+3+4+9+20+75+23+0%0Ab+0+3+4+13+20+75+24+0%0Ab+0+3+4+17+20+75+25+0%0Ab+0+3+4+21+20+75+26+0%0Ab+0+3+4+25+20+75+27+0%0Ab+0+3+4+29+20+75+28+0%0Ab+0+3+4+33+20+75+29+0%0Ab+0+3+4+37+20+75+30+0%0Ab+0+3+4+41+20+75+31+0%0Ab+0+3+4+45+20+75+32+0%0Ab+0+3+4+49+20+75+33+0%0Ab+0+3+4+53+20+75+34+0%0Ab+0+3+4+57+20+75+35+0%0Ab+0+3+4+61+20+75+36+0%0Ab+0+3+4+65+20+75+37+0%0Ab+0+3+4+69+20+75+38+0%0Ab+0+3+4+73+20+75+39+0%0Ab+0+3+4+77+20+75+40+0%0Ab+0+3+4+81+20+75+41+0%0Ab+0+3+4+85+20+75+42+0%0Ab+0+3+4+89+20+75+43+0%0A 600,600 noborder}} 
 +</WRAP></WRAP> 
 + 
 +Since $\vec{D} = \varepsilon_{0} \varepsilon_{ \rm r} \cdot \vec{E} \;$ the direction of the fields must be the same. \\
 Using the fields, we can now derive the change in the angle: Using the fields, we can now derive the change in the angle:
  
 \begin{align*} \begin{align*}
-\boxed { { { tan \alpha_1 } \over { tan \alpha_2  } } = { { \varepsilon_{r1} } \over { \varepsilon_{r2}  } } }+\boxed { { { \tan \alpha_1 } \over { \tan \alpha_2  } } = { { \varepsilon_{ \rm r1} } \over { \varepsilon_{ \rm r2}  } } }
 \end{align*} \end{align*}
  
-The formula obtained represents the law of refraction of the field line at interfaces. There is also a hint that for electromagnetic waves (like visible light) the refractive index might depend on the dielectric constant. In fact, this is the case. However, in the calculation presented here, electrostatic fields were assumed. In the case of electromagnetic waves, the distribution of energy between the two fields must be taken into account. This is not considered in detail in this course.+The formula obtained represents the law of refraction of the field line at interfaces. There is also a hint that for electromagnetic waves (like visible light) the refractive index might depend on the dielectric constant. This is the case. However, in the calculation presented here, electrostatic fields were assumed. In the case of electromagnetic waves, the distribution of energy between the two fields must be taken into account. This is not considered in detail in this course but is explained shortly in task 1.9.1. 
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
 +====Tasks====
  
-Different dielectrics in the capacitor+<panel type="info" title="Task 1.9.1 Layered Capacitor Task"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-{{youtube>Uyddvk23iHY}}+{{youtube>ATXnPRXXDi4}}
  
-{{youtube>0ZxbPGKA2Po}}+</WRAP></WRAP></panel>
  
-~~PAGEBREAK~~ ~~CLEARFIX~~+<panel type="info" title="Exercise 1.9.2 Further capacitor charging/discharging practice Exercise "> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-====Tasks====+{{youtube>a-gPuw6JsxQ}}
  
-<panel type="info" title="Task 1.9.1 Layered Capacitor Task"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+</WRAP></WRAP></panel>
  
-{{youtube>wFSzB68OHzI}}+<panel type="info" title="Exercise 1.9.3 Further practice charging the capacitor"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 + 
 +{{youtube>L0S_Aw8pBto}}
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
 +<panel type="info" title="Exercise 1.9.4 Charge balance of two capacitors"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +{{youtube>EMdpkDoMXXE}}
 +
 +</WRAP></WRAP></panel>
  
-<panel type="info" title="Task 1.9.Capacitor with glass plate"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Exercise 1.9.Capacitor with glass plate"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
 <WRAP> <WRAP>
 <imgcaption ImgNr15 | Structure of a capacitor with glass plate> <imgcaption ImgNr15 | Structure of a capacitor with glass plate>
 </imgcaption> </imgcaption>
-{{drawio>CapacitorWithGlassPlate}}+{{drawio>CapacitorWithGlassPlate.svg}}
 </WRAP> </WRAP>
  
-Two parallel capacitor plates face each other with a distance $d_K 10mm$. A voltage of $U = 3'000V$ is applied to the capacitor. Parallel to the capacitor plates there is a glass plate ($\varepsilon_{r,G}=8$) with a thickness $d_G 3mm$ in the capacitor.+Two parallel capacitor plates face each other with a distance $d_{ \rm K} 10~{ \rm mm}$. A voltage of $U = 3'000~{ \rm V}$ is applied to the capacitor.  
 +Parallel to the capacitor plates there is a glass plate ($\varepsilon_{ \rm r, G}=8$) with a thickness $d_{ \rm G} 3~{ \rm mm}$ in the capacitor.
  
-  - Calculate the partial voltages $U_G$ in the glass and $U_L$ in the air gap. +  - Calculate the partial voltages $U_{ \rm G}$ in the glass and $U_{ \rm A}$ in the air gap. 
-  - What is the maximum thickness of the glass pane if the electric field $E_{0,G} =12 kV/cm$ must not exceed.+  - What is the maximum thickness of the glass pane if the electric field $E_{ \rm 0, G} =12 ~{ \rm kV/cm}$ must not exceed?
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 1353: Zeile 1596:
 <imgcaption ImgNr16 | summary of electrostatics> <imgcaption ImgNr16 | summary of electrostatics>
 </imgcaption> </imgcaption>
-{{drawio>SummaryElectrostatic}}+{{drawio>SummaryElectrostatic.svg}}
 </WRAP> </WRAP>
  
Zeile 1360: Zeile 1603:
 ====== Further links ====== ====== Further links ======
  
-  * [[https://lx3.mint-kolleg.kit.edu/onlinekursphysik/html/1.4.1/modstart.html|Online Bridge Course Physics KIT]]: This semi-interactive course contains some of the information from my course. Furthermore, videos, exercises and more can be found there+  * [[https://lx3.mint-kolleg.kit.edu/onlinekursphysik/html/1.4.1/modstart.html|Online Bridge Course Physics KIT]]: This semi-interactive course contains some of the information from my course. Furthermore, videos, exercisesand more can be found here.
  
 ====== additional Links ====== ====== additional Links ======
Zeile 1371: Zeile 1614:
  
  
-really great introduction in electric and magnetic fields (but a bit too deep for this course) can be found in the [[https://www.youtube.com/watch?v=rtlJoXxlSFE&list=PLyQSN7X0ro2314mKyUiOILaOC2hk6Pc3j&ab_channel=LecturesbyWalterLewin.Theywillmakeyou%E2%99%A5Physics.|physics lecture of Walter Lewin]]+A great introduction to electric and magnetic fields (but a bit too deep for this course) can be found in the [[https://www.youtube.com/watch?v=rtlJoXxlSFE&list=PLyQSN7X0ro2314mKyUiOILaOC2hk6Pc3j&ab_channel=LecturesbyWalterLewin.Theywillmakeyou%E2%99%A5Physics.|physics lecture of Walter Lewin]]
  
 examples: examples: