Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:the_time-dependent_magnetic_field [2024/04/29 20:45]
mexleadmin [4 Time-dependent magnetic Field]
electrical_engineering_2:the_time-dependent_magnetic_field [2024/05/07 03:52] (aktuell)
mexleadmin [Rod in Circuit]
Zeile 16: Zeile 16:
 </callout> </callout>
  
-We have been considering electric fields created by fixed charge distributions and magnetic fields produced by constant currents, but electromagnetic phenomena are not restricted to these stationary situations. Most of the interesting applications of electromagnetism are, in fact, time-dependent. To investigate some of these applications, we now remove the time-independent assumption that we have been making and allow the fields to vary with time. In this and the next several chapters, you will see a wonderful symmetry in the behavior exhibited by time-varying electric and magnetic fields. Mathematically, this symmetry is expressed by an additional term in Ampère’s law and by another key equation of electromagnetism called Faraday’s law. We also discuss how moving a wire through a magnetic field produces a potential difference.+We have been considering electric fields created by fixed charge distributions and magnetic fields produced by constant currents, but electromagnetic phenomena are not restricted to these stationary situations. Most of the interesting applications of electromagnetism are, in fact, time-dependent. To investigate some of these applications, we now remove the time-independent assumption we have been making and allow the fields to vary with time. In this and the next several chapters, you will see a wonderful symmetry in the behavior exhibited by time-varying electric and magnetic fields. Mathematically, this symmetry is expressed by an additional term in Ampère’s law and by another key equation of electromagnetism called Faraday’s law. We also discuss how moving a wire through a magnetic field produces a potential difference.
  
 Lastly, we describe applications of these principles, such as the card reader shown in <imgref ImgNr01>. The black strip found on the back of credit cards and driver’s licenses is a very thin layer of magnetic material with information stored on it. Reading and writing the information on the credit card is done with a swiping motion. The physical reason why this is necessary is called electromagnetic induction and is discussed in this chapter. Lastly, we describe applications of these principles, such as the card reader shown in <imgref ImgNr01>. The black strip found on the back of credit cards and driver’s licenses is a very thin layer of magnetic material with information stored on it. Reading and writing the information on the credit card is done with a swiping motion. The physical reason why this is necessary is called electromagnetic induction and is discussed in this chapter.
  
-<WRAP> <imgcaption ImgNr01 | a Credit Card as an magnetic Application> </imgcaption> {{drawio>Creditcard}} </WRAP>+<WRAP> <imgcaption ImgNr01 | a Credit Card as an magnetic Application> </imgcaption> {{drawio>Creditcard.svg}} </WRAP>
  
 ===== 4.1 Recap of magnetic Field ===== ===== 4.1 Recap of magnetic Field =====
Zeile 60: Zeile 60:
 <WRAP> <imgcaption ImgNr05 | A circuit bounding an arbitrary open surface S. > </imgcaption> {{drawio>FluxThroughSurfaces.svg}} </WRAP> <WRAP> <imgcaption ImgNr05 | A circuit bounding an arbitrary open surface S. > </imgcaption> {{drawio>FluxThroughSurfaces.svg}} </WRAP>
  
-The SI unit for magnetic flux is the Weber (Wb), \begin{align*} [\Phi_{\rm m}] = [B] \cdot [A] = 1 ~\rm  T \cdot m^2 = 1 ~ Wb \end{align*}+The SI unit for magnetic flux is the $\rm Weber(Wb), \begin{align*} [\Phi_{\rm m}] = [B] \cdot [A] = 1 ~\rm  T \cdot m^2 = 1 ~ Wb \end{align*}
  
-Occasionally, the magnetic field unit is expressed as webers per square meter ($\rm Wb/m^2$) instead of teslas, based on this definition+Based on this definition, the magnetic field unit is occasionally expressed as Weber per square meter ($\rm Wb/m^2$) instead of teslas. 
 In many practical applications, the circuit of interest consists of a number $N$ of tightly wound turns (similar to <imgref ImgNr06>).  In many practical applications, the circuit of interest consists of a number $N$ of tightly wound turns (similar to <imgref ImgNr06>). 
 Each turn experiences the same magnetic flux $\Phi_{\rm m}$.  Each turn experiences the same magnetic flux $\Phi_{\rm m}$. 
Zeile 139: Zeile 139:
 To use Lenz’s law to determine the directions of induced potential difference, currents, and magnetic fields: To use Lenz’s law to determine the directions of induced potential difference, currents, and magnetic fields:
  
-  - Make a sketch of the situation for use in visualizing and recording directions.+  - Make a sketch of the situation to visualize and record the directions of fields, movements etc. .
   - Determine the direction of the applied magnetic field $\vec{B}$.   - Determine the direction of the applied magnetic field $\vec{B}$.
   - Determine whether the magnitude of its magnetic flux is increasing or decreasing.   - Determine whether the magnitude of its magnetic flux is increasing or decreasing.
-  - Now determine the direction of the induced magnetic field $\vec{B_{\rm ind}}$. The induced magnetic field tries to reinforce a magnetic flux that is decreasing or opposes a magnetic flux that is increasing. Therefore, the induced magnetic field adds or subtracts from the applied magnetic field, depending on the change in magnetic flux.+  - Now determine the direction of the induced magnetic field $\vec{B_{\rm ind}}$. \\ The induced magnetic field attempts to withstand its cause: It tries to strengthen decreasing magnetic flux (or to counteract an increasing magnetic flux). Therefore, the induced magnetic field adds or subtracts from the applied magnetic field, depending on the change in magnetic flux.
   - Use the right-hand rule to determine the direction of the induced current $i_{\rm ind}$ that is responsible for the induced magnetic field $\vec{B}_{\rm ind}$.   - Use the right-hand rule to determine the direction of the induced current $i_{\rm ind}$ that is responsible for the induced magnetic field $\vec{B}_{\rm ind}$.
   - The direction (or polarity) of the induced potential difference can now drive a conventional current in this direction.   - The direction (or polarity) of the induced potential difference can now drive a conventional current in this direction.
Zeile 371: Zeile 371:
  
 \begin{align*}  \begin{align*} 
-u_{\rm ind} &= N B \cdot \sin \varphi \cdot {{{\rm d} \varphi}\over{{\rm d}t}} +u_{\rm ind} &= N B \cdot \sin \varphi \cdot {{{\rm d} \varphi}\over{{\rm d}t}} 
 \end{align*}  \end{align*} 
 </collapse> </collapse>
Zeile 377: Zeile 377:
 <button size="xs" type="link" collapse="Solution_4_3_4_1_Solution">{{icon>eye}} Solution</button><collapse id="Solution_4_3_4_1_Solution" collapsed="true"> <button size="xs" type="link" collapse="Solution_4_3_4_1_Solution">{{icon>eye}} Solution</button><collapse id="Solution_4_3_4_1_Solution" collapsed="true">
  
-We are given that $N=200$, $B=0.80~\rm T$ , $\varphi = 90°$ , $d\varphi=90°=\pi/2$ , and $\Delta t=5.0~\rm ms$ .+We are given that $N=200$, $B=0.80~\rm T$ , $\varphi = 90°$ , $\Delta\varphi=90°=\pi/2$ , and $\Delta t=5.0~\rm ms$ .
  
 The area of the loop is The area of the loop is
Zeile 503: Zeile 503:
 The <imgref BildNr5> shows an inductor in series with a resistor and a switch (any real switch also behaves as a capacitor, when open).  The <imgref BildNr5> shows an inductor in series with a resistor and a switch (any real switch also behaves as a capacitor, when open). 
 Once the simulation is started, the inductor directly counteracts the current, which is why the current only slowly increases. Once the simulation is started, the inductor directly counteracts the current, which is why the current only slowly increases.
 +
 +The unit of the inductance is $\rm 1 ~Henry = 1 ~H = 1 {{Vs}\over{A}} = 1{{Wb}\over{A}} $
  
 <WRAP> <imgcaption BildNr5 | Example of a Circuit with an Inductor> </imgcaption> \\ {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCBMCmC0CcIAsA6ADAdgBwFYMYGYcd4CyCsQc0rlIq4wwAoANyiRoLSQ5qfo0anWkJBoUOZgBsQZAGzh5XAosiReQ9GghDmAJzmqoGo4u6bwaNMwIYVigWaX9x45gHc+cns4vuADyUCKDRKMAw1JmQOEABXZiCIykgwRywUsEReMEobIKRUqAxeJDJijBjckAAlROQ0NXlFJCyoeWzYhIL1UJCy+khGqsoAGXrOSqycOn54Sl5TbuQwGbAy2fAkFtiAS09vJwVwMEF6oZpUlKGTCFKaQGTCers1NBmCeFeFhpAnoLtFh05PBFhh6PdfswAPbgEDySwBLBgHTQEBYLS6KBYsSXdwwkLwtyI5FgAAmonQayxgjktIkaDOQA noborder}} </WRAP> <WRAP> <imgcaption BildNr5 | Example of a Circuit with an Inductor> </imgcaption> \\ {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCBMCmC0CcIAsA6ADAdgBwFYMYGYcd4CyCsQc0rlIq4wwAoANyiRoLSQ5qfo0anWkJBoUOZgBsQZAGzh5XAosiReQ9GghDmAJzmqoGo4u6bwaNMwIYVigWaX9x45gHc+cns4vuADyUCKDRKMAw1JmQOEABXZiCIykgwRywUsEReMEobIKRUqAxeJDJijBjckAAlROQ0NXlFJCyoeWzYhIL1UJCy+khGqsoAGXrOSqycOn54Sl5TbuQwGbAy2fAkFtiAS09vJwVwMEF6oZpUlKGTCFKaQGTCers1NBmCeFeFhpAnoLtFh05PBFhh6PdfswAPbgEDySwBLBgHTQEBYLS6KBYsSXdwwkLwtyI5FgAAmonQayxgjktIkaDOQA noborder}} </WRAP>
Zeile 569: Zeile 571:
 <WRAP> <imgcaption ImgNrEx01| Flux-Time-Diagrams> </imgcaption> <WRAP> {{drawio>FluxTimeDia1.svg}} \\ </WRAP></WRAP> <WRAP> <imgcaption ImgNrEx01| Flux-Time-Diagrams> </imgcaption> <WRAP> {{drawio>FluxTimeDia1.svg}} \\ </WRAP></WRAP>
  
-<button size="xs" type="link" collapse="Solution_4_1_4_1_Solution">{{icon>eye}} Solution</button><collapse id="Solution_4_1_4_1_Solution" collapsed="true">+<button size="xs" type="link" collapse="Solution_4_1_4_1_Solution">{{icon>eye}} Solution for (a)</button><collapse id="Solution_4_1_4_1_Solution" collapsed="true">
  
 For partwise linear $u_{\rm ind}$ one can derive:  For partwise linear $u_{\rm ind}$ one can derive: 
Zeile 585: Zeile 587:
 </collapse> </collapse>
  
-<button size="xs" type="link" collapse="Solution_4_1_4_1_Finalresult">{{icon>eye}} Final result</button><collapse id="Solution_4_1_4_1_Finalresult" collapsed="true"> <WRAP> <imgcaption ImgNrEx01| Flux-Time-Diagrams Solution> </imgcaption> <WRAP> {{drawio>FluxTimeDia1Solution.svg}} \\ </WRAP></WRAP> \\ </collapse>+<button size="xs" type="link" collapse="Solution_4_1_4_1_Finalresult"> 
 +{{icon>eye}} Final result for (a)</button><collapse id="Solution_4_1_4_1_Finalresult" collapsed="true">  
 +<WRAP> <imgcaption ImgNrEx01| Flux-Time-Diagrams Solution> </imgcaption> <WRAP> {{drawio>FluxTimeDia1Solution.svg}} \\  
 +</WRAP></WRAP> \\  
 +</collapse>
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 600: Zeile 606:
  
 <WRAP> <imgcaption ImgNrEx02| Voltage-Time-Diagrams> </imgcaption> <WRAP> {{drawio>FluxTimeDia2.svg}} \\ </WRAP></WRAP> <WRAP> <imgcaption ImgNrEx02| Voltage-Time-Diagrams> </imgcaption> <WRAP> {{drawio>FluxTimeDia2.svg}} \\ </WRAP></WRAP>
 +
 +#@HiddenBegin_HTML~415_1S,Solution for (a)~@#
 +
 +For partwise linear $u_{\rm ind}$ one can derive: 
 +\begin{align*} 
 +u_{\rm ind}        &= -{{{\rm d}\Phi}\over{{\rm d}t}} \\ 
 +\rightarrow  \Phi  &= -\int_0^t{ u_{\rm ind} \;{\rm d}t} \\
 +\Phi               &= \Phi_0 -\sum_k {u_{{\rm ind},~k} \; \Delta t} \\
 +\end{align*}
 +
 +For diagram (a):
 +
 +  * $t= 0.00 ... 0.04 ~\rm s\quad$: $\quad \Phi = \Phi_0 - {0 \cdot \; \Delta t} \quad\quad\quad\quad\quad\quad\quad= 0 ~\rm Wb$
 +  * $t= 0.04 ... 0.10 ~\rm s\quad$: $\quad \Phi =   0 {~\rm Wb} - {{30 ~\rm mV} \cdot \; (t - 0.04 ~\rm s)} = \quad {1.2 ~\rm mWb} - t \cdot 30 ~\rm mV$
 +  * $t= 0.10 ... 0.14 ~\rm s\quad$: $\quad \Phi =   {1.2 ~\rm mWb} - {0.10 ~\rm s} \cdot 30 ~\rm mV \quad = - {1.8 ~\rm mWb}$
 +
 +#@HiddenEnd_HTML~415_1S,Solution ~@#
 +
 +#@HiddenBegin_HTML~415_1R,Result for (a)~@#
 +{{drawio>FluxTimeDia2Res.svg}} 
 +#@HiddenEnd_HTML~415_1R,Result~@#
 +
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 676: Zeile 704:
 Calculate the inductance for the following settings Calculate the inductance for the following settings
  
-  - cylindrical air coil with $N=400$, winding diameter $d=3 ~\rm cm$ and length $l=18 ~\rm cm$ +1. Cylindrical long air coil with $N=390$, winding diameter $d=3.0 ~\rm cm$ and length $l=18 ~\rm cm$ 
-  similar coil geometry as explained in 1. , but with double the number of windings +#@HiddenBegin_HTML~4511S,Solution~@# 
-  - two coils as explained in 1. in series + 
-  - similar coil geometry and number of windings as explained in 1. , but with an iron core ($\mu_{\rm r}=1000$)+\begin{align*}  
 +L_1 &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \\ 
 +    &= 4\pi \cdot 10^{-7} {\rm {{H}\over{m}}} \cdot 1 \cdot (390)^2 \cdot {{\pi \cdot (0.03~\rm m)^2 }\over {0.18 ~\rm m}} 
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~4511S,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~4511R,Result~@# 
 +\begin{align*}  
 +L_1 &= 3.0 ~\rm mH 
 +\end{align*} 
 +#@HiddenEnd_HTML~4511R,Result~@# 
 + 
 +2. Similar coil geometry as explained in 1. , but with double the number of windings 
 + 
 +#@HiddenBegin_HTML~4512S,Solution~@# 
 +\begin{align*}  
 +L_2 &= \mu_0 \mu_{\rm r} \cdot N_2^2 \cdot {{A }\over {l}} \\ 
 +    &= \mu_0 \mu_{\rm r} \cdot (2\cdot N)^2 \cdot {{A }\over {l}} \\ 
 +    &= \mu_0 \mu_{\rm r} \cdot 4\cdot N^2 \cdot {{A }\over {l}} \\ 
 +    &= 4\cdot L_1 \\ 
 +\end{align*} 
 +#@HiddenEnd_HTML~4512S,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~4512R,Result~@# 
 +\begin{align*}  
 +L_1 &= 12 ~\rm mH 
 +\end{align*} 
 +#@HiddenEnd_HTML~4512R,Result~@# 
 + 
 +3. Two coils as explained in 1. in series 
 + 
 +#@HiddenBegin_HTML~4513S,Solution~@# 
 +multiple inductances in series just add up. One can think of adding more windings to the first coil in the formula.. 
 + 
 +#@HiddenEnd_HTML~4513S,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~4513R,Result~@# 
 +\begin{align*}  
 +L_1 &= 6.0 ~\rm mH 
 +\end{align*} 
 +#@HiddenEnd_HTML~4513R,Result~@# 
 + 
 +4. Similar coil geometry and number of windings as explained in 1. , but with an iron core ($\mu_{\rm r}=1000$) 
 + 
 +#@HiddenBegin_HTML~4514S,Solution~@# 
 +\begin{align*}  
 +L_4 &= \mu_0 \mu_{\rm r,4} \cdot N^2 \cdot {{A }\over {l}} \\ 
 +    &= \mu_0 \codt 1000 \cdot N^2 \cdot {{A }\over {l}} \\ 
 +    &= 1000 \cdot L_4 \\ 
 +\end{align*} 
 +#@HiddenEnd_HTML~4514S,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~4514R,Result~@# 
 +\begin{align*}  
 +L_4 &= 3.0 ~\rm H 
 +\end{align*} 
 +#@HiddenEnd_HTML~4514R,Result~@#
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 685: Zeile 770:
 <panel type="info" title="Exercise 4.5.2 Self Induction II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 4.5.2 Self Induction II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-A cylindrical air coil (length $l=40 ~\rm cm$, diameter $d=5 ~\rm cm$, and a number of windings $N=300$) passes a current of $30 ~\rm A$. The current shall be reduced linearly in $2 ~\rm ms$ down to $0 ~\rm A$.+A cylindrical air coil (length $l=40 ~\rm cm$, diameter $d=5.0 ~\rm cm$, and a number of windings $N=300$) passes a current of $30 ~\rm A$. The current shall be reduced linearly in $2.0 ~\rm ms$ down to $0.0 ~\rm A$.
  
-What is the amount of the induced voltage $u_{\rm ind}$? </WRAP></WRAP></panel>+What is the amount of the induced voltage $u_{\rm ind}$?  
 + 
 +#@HiddenBegin_HTML~4521S,Solution~@# 
 + 
 +The requested induced voltage can be derived by: 
 + 
 +\begin{align*}  
 +L                                      &= \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\  
 +\rightarrow  \left|u_{\rm ind}\right|  &= L \cdot \left|{{{\rm d}i}\over{{\rm d}t}}\right| \\  
 +                                       &= L \cdot \left|{{\Delta i}\over{\Delta t}}\right| \\  
 +\end{align*} 
 + 
 +Therefore, we just need the inductance $L$, since ${{\Delta i}\over{\Delta t}}$ is defined as $30 ~\rm A$ per $2 ~\rm ms$: 
 + 
 +\begin{align*}  
 +L &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \\ 
 +\end{align*} 
 + 
 +So, the result can be derived as: 
 +\begin{align*}  
 +\left|u_{\rm ind}\right| &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \cdot \left|{{\Delta i}\over{\Delta t}}\right| \\ 
 +                         &= 4\pi \cdot 10^{-7} {\rm {{H}\over{m}}} \cdot 1 \cdot (300)^2 \cdot {{\pi \cdot (0.05~\rm m)^2 }\over {0.40 ~\rm m}} \cdot {{30 ~\rm A}\over{2 ~\rm ms}} 
 +\end{align*} 
 +#@HiddenEnd_HTML~4521S,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~1,Result~@# 
 +\begin{align*}  
 +\left|u_{\rm ind}\right| &= 33 ~\rm V\end{align*} 
 +#@HiddenEnd_HTML~1,Result~@# 
 + 
 + 
 +</WRAP></WRAP></panel>
  
 <panel type="info" title="Exercise 4.5.3 Self Induction III"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 4.5.3 Self Induction III"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>