Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:the_time-dependent_magnetic_field [2023/03/17 09:23]
mexleadmin
electrical_engineering_2:the_time-dependent_magnetic_field [2023/09/19 23:51] (aktuell)
mexleadmin
Zeile 1: Zeile 1:
-====== 4. time-dependent magnetic Field ======+====== 4 Time-dependent magnetic Field ======
  
 <callout> This chapter is based on the book 'University Physics II' ([[https://creativecommons.org/licenses/by/4.0|CC BY 4.0]], Authors: [[https://openstax.org/details/books/university-physics-volume-2|Open Stax]] ). In detail this is chapter [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)|11. Magnetic Forces and Fields]] </callout> <callout> This chapter is based on the book 'University Physics II' ([[https://creativecommons.org/licenses/by/4.0|CC BY 4.0]], Authors: [[https://openstax.org/details/books/university-physics-volume-2|Open Stax]] ). In detail this is chapter [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)|11. Magnetic Forces and Fields]] </callout>
Zeile 44: Zeile 44:
 This definition leads to a magnetic flux similar to the electric flux studied earlier: This definition leads to a magnetic flux similar to the electric flux studied earlier:
  
-\begin{align*} \Phi_m = \iint_A \vec{B} \cdot {\rm d} \vec{A} \end{align*}+\begin{align*} \Phi_{\rm m} = \iint_A \vec{B} \cdot {\rm d} \vec{A} \end{align*}
  
 Therefore, the induced potential difference generated by a conductor or coil moving in a magnetic field is Therefore, the induced potential difference generated by a conductor or coil moving in a magnetic field is
  
-\begin{align*} \boxed{ U_{\rm ind} = -{{{\rm d} \Phi_m}\over{{\rm d}t}} = -{{\rm d}\over{{\rm d}t}}\iint_A \vec{B} \cdot {\rm d} \vec{A} } \end{align*}+\begin{align*} \boxed{ U_{\rm ind} = -{{{\rm d} \Phi_{\rm m}}\over{{\rm d}t}} = -{{\rm d}\over{{\rm d}t}}\iint_A \vec{B} \cdot {\rm d} \vec{A} } \end{align*}
  
 The negative sign describes the direction in which the induced potential difference drives current around a circuit. However, that direction is most easily determined with a rule known as Lenz’s law, which we will discuss in the next subchapter. The negative sign describes the direction in which the induced potential difference drives current around a circuit. However, that direction is most easily determined with a rule known as Lenz’s law, which we will discuss in the next subchapter.
Zeile 54: Zeile 54:
 <imgref ImgNr05> depicts a circuit and an arbitrary surface $S$ that it bounds. Notice that $S$ is an open surface: The planar area bounded by the circuit is not part of the surface, so it is not fully enclosing a volume. <imgref ImgNr05> depicts a circuit and an arbitrary surface $S$ that it bounds. Notice that $S$ is an open surface: The planar area bounded by the circuit is not part of the surface, so it is not fully enclosing a volume.
  
-Since the magnetic field is a source-free vortex field, the flux over a closed area is always zero: $\Phi_{\rm m} = \iint_{A} \vec{B} \cdot {\rm d} \vec{A} = 0$. \\ +Since the magnetic field is a source-free vortex field, the flux over a closed area is always zero: $\Phi_{\rm m} = {\rlap{\Large \rlap{\int} \int} \, \LARGE \circ}_{A} \vec{B} \cdot {\rm d} \vec{A} = 0$. \\ 
 By this, it can be shown that any open surface bounded by the circuit in question can be used to evaluate $\Phi_{\rm m}$ (similar to the [[:electrical_engineering_2:the_stationary_electric_flow#gauss_s_law_for_current_density|Gauss's law for current density]]).  By this, it can be shown that any open surface bounded by the circuit in question can be used to evaluate $\Phi_{\rm m}$ (similar to the [[:electrical_engineering_2:the_stationary_electric_flow#gauss_s_law_for_current_density|Gauss's law for current density]]). 
 For example, $\Phi_{\rm m}$ is the same for the various surfaces $S$, $S_1$, $S_2$ of the figure. For example, $\Phi_{\rm m}$ is the same for the various surfaces $S$, $S_1$, $S_2$ of the figure.
Zeile 94: Zeile 94:
  
 \begin{align*}  \begin{align*} 
-|U_{\rm ind}| &= |-{{d}\over{dt}}(N \cdot \Phi_m)| \\  +|U_{\rm ind}| &= |-        {{\rm d}\over{{\rm d}t}}(N \cdot \Phi_{\rm m})| \\  
-              &= -N \cdot {{d}\over{dt}} (B \cdot A) \\  +              &|-N \cdot {{\rm d}\over{{\rm d}t}}(B \cdot A)           | \\  
-              &= -N \cdot l^2 \cdot {{dB}\over{dt}} \\  +              &|-N \cdot l^2 \cdot {{{\rm d}B}\over{{\rm d}t}}| \\  
-              &= (200)(0.25m)^2(0.040 T/s) \\  +              &= (200)(0.25 ~\rm m)^2(0.040 ~T/s) \\  
-              &= 0.50 V +              &= 0.50 ~
 \end{align*} \end{align*}
  
Zeile 141: Zeile 141:
   - Make a sketch of the situation for use in visualizing and recording directions.   - Make a sketch of the situation for use in visualizing and recording directions.
   - Determine the direction of the applied magnetic field $\vec{B}$.   - Determine the direction of the applied magnetic field $\vec{B}$.
-  - Determine whether its magnetic flux is increasing or decreasing.+  - Determine whether the magnitude of its magnetic flux is increasing or decreasing.
   - Now determine the direction of the induced magnetic field $\vec{B_{\rm ind}}$. The induced magnetic field tries to reinforce a magnetic flux that is decreasing or opposes a magnetic flux that is increasing. Therefore, the induced magnetic field adds or subtracts from the applied magnetic field, depending on the change in magnetic flux.   - Now determine the direction of the induced magnetic field $\vec{B_{\rm ind}}$. The induced magnetic field tries to reinforce a magnetic flux that is decreasing or opposes a magnetic flux that is increasing. Therefore, the induced magnetic field adds or subtracts from the applied magnetic field, depending on the change in magnetic flux.
   - Use the right-hand rule to determine the direction of the induced current $i_{\rm ind}$ that is responsible for the induced magnetic field $\vec{B}_{\rm ind}$.   - Use the right-hand rule to determine the direction of the induced current $i_{\rm ind}$ that is responsible for the induced magnetic field $\vec{B}_{\rm ind}$.
Zeile 233: Zeile 233:
 Furthermore, the direction of the induced potential difference satisfies Lenz’s law, as you can verify by inspection of the figure. Furthermore, the direction of the induced potential difference satisfies Lenz’s law, as you can verify by inspection of the figure.
  
-The situation of the single rod can be interpreted in the following way: We can calculate a motionally induced potential difference with Faraday’s law even when an actual closed circuit is not present. We simply imagine an enclosed area whose boundary includes the moving conductor, calculate $\Phi_m$, and then find the potential difference from Faraday’s law. For example, we can let the moving rod of <imgref ImgNr10> be one side of the imaginary rectangular area represented by the dashed lines. The area of the rectangle is $A = l \cdot x$, so the magnetic flux through it is $\Phi= B\cdot l \cdot x$. Differentiating this equation, we obtain+The situation of the single rod can be interpreted in the following way: We can calculate a motionally induced potential difference with Faraday’s law even when an actual closed circuit is not present. We simply imagine an enclosed area whose boundary includes the moving conductor, calculate $\Phi_{\rm m}$, and then find the potential difference from Faraday’s law. For example, we can let the moving rod of <imgref ImgNr10> be one side of the imaginary rectangular area represented by the dashed lines. The area of the rectangle is $A = l \cdot x$, so the magnetic flux through it is $\Phi= B\cdot l \cdot x$. Differentiating this equation, we obtain
  
 \begin{align*}  \begin{align*} 
Zeile 343: Zeile 343:
 This changes the function to time-space rather than $\varphi$. The induced potential difference, therefore, varies sinusoidally with time according to This changes the function to time-space rather than $\varphi$. The induced potential difference, therefore, varies sinusoidally with time according to
  
-\begin{align*} u_{ind} &= U_{ind,0} \cdot sin \omega t \end{align*}+\begin{align*} u_{ind} &= U_{ind,0} \cdot \sin \omega t \end{align*}
  
 where $U_{\rm ind,0} = NBA\omega$. </collapse> where $U_{\rm ind,0} = NBA\omega$. </collapse>
Zeile 351: Zeile 351:
 <panel type="info" title="Exercise 4.3.4 Calculating the Potential Difference Induced in a Generator Coil"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 4.3.4 Calculating the Potential Difference Induced in a Generator Coil"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-The generator coil shown in <imgref ImgNr13> is rotated through one-fourth of a revolution (from $\phi_0=0°$ to $\phi_1=90°$) in $5.0 ~\rm ms$. +The generator coil shown in <imgref ImgNr13> is rotated through one-fourth of a revolution (from $\varphi_0=0°$ to $\varphi_1=90°$) in $5.0 ~\rm ms$. 
 The $200$-turn circular coil has a $5.00 ~\rm cm$ radius and is in a uniform $0.80 ~\rm T$ magnetic field. The $200$-turn circular coil has a $5.00 ~\rm cm$ radius and is in a uniform $0.80 ~\rm T$ magnetic field.
  
Zeile 382: Zeile 382:
  
 \begin{align*}  \begin{align*} 
-A = \pi r^2 = 3.14 \cdot (0.0500~\r, m)^2 = 7.85 \cdot 10^{-3} ~\rm m^2 +A = \pi r^2 = 3.14 \cdot (0.0500~\rm m)^2 = 7.85 \cdot 10^{-3} ~\rm m^2 
 \end{align*} \end{align*}
  
Zeile 442: Zeile 442:
 \begin{align*}  \begin{align*} 
 \theta(t) &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} \\  \theta(t) &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} \\ 
-          &= \int & \vec{H}_{inner}(t) \cdot {\rm d}\vec{s} & + & \int \vec{H}_{outer}(t) \cdot {\rm d} \vec{s} \\  +          &= \int & \vec{H}_{\rm inner}(t) \cdot {\rm d}\vec{s} & + & \int \vec{H}_{\rm outer}(t) \cdot {\rm d} \vec{s} \\  
-          &= \int & \vec{H}(t) \cdot {\rm d}\vec{s}         & + &   0 \\ +          &= \int & \vec{H}(t) \cdot {\rm d}\vec{s}             & + &   0 \\ 
           &     & {H}(t) \cdot l \\            &     & {H}(t) \cdot l \\ 
 \end{align*} \end{align*}
Zeile 451: Zeile 451:
 \begin{align*}  \begin{align*} 
 N \cdot i &= {H}(t) \cdot l \\  N \cdot i &= {H}(t) \cdot l \\ 
-   {H}(t) &                  {{N \cdot i }\over {l}} \\  +   {H}(t) &                        {{N \cdot i }\over {l}} \\  
-   {B}(t) &= \mu_0 \mu_r \cdot {{N \cdot i }\over {l}} \\ +   {B}(t) &= \mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \\ 
 \end{align*} \end{align*}
  
Zeile 536: Zeile 536:
 \begin{align*} H(t) = {{N \cdot i}\over {l}} \end{align*} \begin{align*} H(t) = {{N \cdot i}\over {l}} \end{align*}
  
-with the mean magnetic path length (= length of the average field line) $l = \pi(r_o r_i)$:+with the mean magnetic path length (= length of the average field line) $l = \pi(r_{\rm o} r_{\rm i})$:
  
-\begin{align*} H(t) = {{N \cdot i}\over { \pi(r_o r_i)}} \end{align*}+\begin{align*} H(t) = {{N \cdot i}\over { \pi(r_{\rm o} r_{\rm i})}} \end{align*}
  
 The inductance $L$ can be calculated by The inductance $L$ can be calculated by
Zeile 547: Zeile 547:
 \end{align*} \end{align*}
  
-With the magnetic flux density $B(t) = \mu_0 \mu_{\rm r} H(t) = \mu_0 \mu_{\rm r} {{i \cdot N }\over {l}}$ and the cross section $A = h (r_o r_i)$, we get:+With the magnetic flux density $B(t) = \mu_0 \mu_{\rm r} H(t) = \mu_0 \mu_{\rm r} {{i \cdot N }\over {l}}$ and the cross section $A = h (r_{\rm o} r_{\rm i})$, we get:
  
 \begin{align*}  \begin{align*} 
-\quad \quad L_{\rm toroidal \; coil} &= {{   N \cdot \mu_0 \mu_{\rm r} {{i \cdot N } \over { \pi(r_o r_i)}} \cdot h(r_o r_i)}\over{i}} \\  +\quad \quad L_{\rm toroidal \; coil} &= {{   N \cdot \mu_0 \mu_{\rm r} {{i \cdot N } \over { \pi(r_{\rm o} r_{\rm i})}} \cdot h(r_{\rm o} r_{\rm i})}\over{i}} \\  
-                                     &= {{ N^2 \cdot \mu_0 \mu_{\rm r}                                        \cdot h(r_o r_i)}\over{ \pi(r_o r_i)}} \\ +                                     &= {{ N^2 \cdot \mu_0 \mu_{\rm r}                                                    \cdot h(r_{\rm o} r_{\rm i})}\over{ \pi(r_{\rm o} r_{\rm i})}} \\ 
 \end{align*} \end{align*}
  
 \begin{align*}  \begin{align*} 
-\boxed{ L_{\rm toroidal \; coil} = \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{ h(r_o r_i)}\over{ \pi(r_o r_i)}} } +\boxed{ L_{\rm toroidal \; coil} = \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{ h(r_{\rm o} r_{\rm i})}\over{ \pi(r_{\rm o} r_{\rm i})}} } 
 \end{align*} \end{align*}
  
Zeile 667: Zeile 667:
 So, the course of the voltage when entering or exiting is not uniquely given. So, the course of the voltage when entering or exiting is not uniquely given.
  
-<WRAP> <imgcaption ImgNrEx04s| Solution> </imgcaption> <WRAP> {{drawio>WindingPolePieces2solution}}  \\ </WRAP></WRAP>+<WRAP> <imgcaption ImgNrEx04s| Solution> </imgcaption> <WRAP>{{drawio>WindingPolePieces2solution.svg}}  \\ </WRAP></WRAP>