$U_A = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} \color{blue}{U_E(t)} \ dt + U_{A0}$Sinusfunktion einsetzen$ \color{blue}{U_E(t)}= \hat{U}_E \cdot sin(\omega \cdot t)$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$
$U_A = -{ 1 \over {R\cdot C} }\cdot\color{blue}{\int_{t_0}^{t_1} \hat{U}_E \cdot sin(\omega \cdot t) \ dt} + U_{A0}$Stammfunktion mit
Grenzen einsetzen
$\color{blue}{\int_{x_0}^{x_1} sin(a \cdot x) \ dx} = [- {1 \over a} \cdot cos(a \cdot x) ]_{x_0}^{x_1}$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$
$U_A = -{ 1 \over {R\cdot C} }\cdot [- \color{blue}{\hat{U}_E \over \omega} \cdot cos(\omega \cdot t) ]_{t_0}^{t_1} + U_{A0}$ Konstante vor
Integral setzen
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$
$U_A = { 1 \over {R\cdot C} }\cdot {\hat{U}_E \over \omega} \cdot \color{blue}{[ cos(\omega \cdot t) ]_{t_0}^{t_1}} + U_{A0}$ Grenzwerte einsetzen$t_0=0$, $t_1=t$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$
$U_A = {{{\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot (} cos(\omega \cdot t) - \color{blue}{cos(0)} ) + U_{A0}$ $\color{blue}{cos(0)}=1$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$
$U_A = \color{blue}{{{ \hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot (} cos(\omega \cdot t) - 1 \color{blue}{)} + U_{A0}$ Ausmultiplizieren
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$
$U_A = { {\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_E } \over {\omega \cdot R\cdot C}} + U_{A0}}$ Betrachtung der
nicht-Kosinus-Terme
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$
$U_A = { {\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_E } \over {\omega \cdot R\cdot C}} + U_{A0}}$ Dieser Teil ist zeitlich unabhängig. Da wir von rein sinusförmigen Größen ausgehen,
muss die für die anfängliche Spannung des Kondensators gelten: $U_{C0} = U_{A0}={{\hat{U}_E} \over {\omega \cdot R\cdot C}}$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$
$U_A = { {\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t)$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad$$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$