Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| introduction_to_digital_systems:calc_decimal_example [2021/09/15 02:16] – tfischer | introduction_to_digital_systems:calc_decimal_example [2021/09/15 03:45] (aktuell) – tfischer | ||
|---|---|---|---|
| Zeile 2: | Zeile 2: | ||
| ----> | ----> | ||
| - | $I.\quad$ | + | Calculation example for decimal value |
| <---- | <---- | ||
| ----> | ----> | ||
| + | Idea: The numeral $2658.47$ is only the representation with the digits $[0..9]$, but what is the value behind it? | ||
| + | |||
| + | <---- | ||
| + | |||
| + | ----> | ||
| + | so lets start | ||
| + | <---- | ||
| + | |||
| + | ----> | ||
| + | 1. Put space between the digits \\ $\quad$ | ||
| \begin{align*} | \begin{align*} | ||
| \begin{smallmatrix} | \begin{smallmatrix} | ||
| - | \text{value}: & | + | \color{black}{\text{numeral}:} |
| - | \text{index}: | + | \color{white}{\text{index}: |
| - | \text{place | + | \color{white}{\text{place |
| - | & | + | \color{white}{} |
| - | \text{digit}: & z_i & 2 & 6 & 5 & 8 | + | \color{white}{\text{digits |
| - | \text{calc.}: & z_i \cdot B^i & 2000 & 600 & 50 | + | \color{white}{\text{place value}:} |
| - | \text{result}: | + | \color{white}{\text{result}: |
| \end{smallmatrix} | \end{smallmatrix} | ||
| \end{align*} | \end{align*} | ||
| + | <---- | ||
| + | |||
| + | ----> | ||
| + | 2. Write down the index for each position. \\ $\quad$ | ||
| \begin{align*} | \begin{align*} | ||
| - | value && | + | \begin{smallmatrix} |
| - | index && i && 3 && 2 && 1 && 0 && -1 && -2 \\ | + | \color{black}{\text{numeral}: |
| - | place value && B^i && 10^3 && 10^2 && 10^1 && 10^0 && 10^{-1} && 10^{-2} \\ | + | \color{blue }{\text{index}:} |
| + | \color{white}{\text{place factor}: | ||
| + | \color{white}{} | ||
| + | \color{white}{\text{digits | ||
| + | \color{white}{\text{place value}: | ||
| + | \color{white}{\text{result}: | ||
| + | \end{smallmatrix} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| - | | value || 2 | 6 | 5 | 8 , | 4 | 7 | ||
| - | | index | $i$ | 3 | 2 | 1 | 0 | -1 | -2 | | ||
| - | | place value | $B^i$ | $\small{10^3}$ \\ $\small{1000}$ | $\small{10^2}$ \\ $\small{100}$ | ||
| - | | digit | $z_i$ | 2 | 6 | 5 | 8 | 4 | 7 | ||
| - | | calc. | $z_i \cdot B^i$ | 2000 | 600 | 50 | 8 | 0.4 | 0.07 | | ||
| - | | Result | ||
| <---- | <---- | ||
| - | ----> | ||
| - | | value || 2 | 6 | 5 | 8 , | 4 | 7 | ||
| - | | index | $i$ | 3 | 2 | 1 | 0 | -1 | -2 | | ||
| - | | $\quad\quad$ \\ $\quad\quad$| $\quad\quad$| $\quad\quad$ | ||
| - | | $\quad\quad$| $\quad\quad$ | ||
| - | | $\quad\quad$| $\quad\quad$ | ||
| - | | $\quad\quad$ \\ $\quad\quad$| $\quad\quad$ | ||
| - | <---- | ||
| ----> | ----> | ||
| - | | value || 2 | 6 | 5 | 8 , | 4 | 7 | | + | 3. calculate the place factor |
| - | | index | $i$ | + | |
| - | | place value | $B^i$ | $\small{10^3}$ | + | |
| - | | digit | $z_i$ | 2 | 6 | 5 | 8 | 4 | 7 | + | |
| - | | calc. | $z_i \cdot B^i$ | 2000 | 600 | 50 | 8 | 0.4 | 0.07 | | + | |
| - | | Result | + | |
| - | <---- | + | |
| - | ----> | + | |
| - | |aus (2+3)|$\color{blue}{I_p} = \color{blue}{I_m} = 0$ |$I_p$ und $I_m$ sind damit definiert| | + | |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | |
| - | <---- | + | |
| - | ----> | + | \begin{align*} |
| - | |aus (6)|$\color{blue}{I_o} = I_1 $ |$I_o$ ist damit bekannt, wenn $I_1$ bekannt ist| | + | \begin{smallmatrix} |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | \color{black}{\text{numeral}: |
| + | \color{black}{\text{index}: | ||
| + | \color{blue }{\text{place factor}: | ||
| + | \color{white}{} & \color{white}{} | ||
| + | \color{white}{\text{digits | ||
| + | \color{white}{\text{place value}: | ||
| + | \color{white}{\text{result}: | ||
| + | \end{smallmatrix} | ||
| + | \end{align*} | ||
| <---- | <---- | ||
| - | ----> | ||
| - | |aus (7) und (3)|$I_1 - I_2 -\color{blue}{0} = 0 $ |$\quad$| | ||
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
| - | <---- | ||
| ----> | ----> | ||
| - | |$\quad$|$I_1 | + | 3. calculate the place factor |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | |
| - | <---- | + | |
| - | ----> | + | \begin{align*} |
| - | |$\quad$|$\color{blue}{I_1} = \color{blue}{I_2} = \color{blue}{I_o} $ |mit (8) und (9): $I_\boxed{}=\frac{U_\boxed{}}{R_\boxed{}}$ und (5)| | + | \begin{smallmatrix} |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | \color{black}{\text{numeral}: |
| + | \color{black}{\text{index}: | ||
| + | \color{blue }{\text{place factor}: | ||
| + | \color{blue }{} & \color{blue }{} & | ||
| + | \color{white}{\text{digits | ||
| + | \color{white}{\text{place value}: | ||
| + | \color{white}{\text{result}: | ||
| + | \end{smallmatrix} | ||
| + | \end{align*} | ||
| <---- | <---- | ||
| - | ----> | ||
| - | | $\quad$ |$\frac{U_1}{R_1}= \frac{U_2}{R_2} = \frac{U_A}{R_1 + R_2}$ | ||
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
| - | <---- | ||
| ----> | ----> | ||
| - | | (10)|$U_2= U_A\cdot\frac{R_2}{R_1+R_2}$ |Spannungsteilerformel| | + | 4. write down each digit of the numeral |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | |
| - | <---- | + | |
| - | ----> | + | \begin{align*} |
| - | $II.\quad$ Betrachtung der Spannungsverstärkung | + | \begin{smallmatrix} |
| + | \color{black}{\text{numeral}: | ||
| + | \color{black}{\text{index}: | ||
| + | \color{black}{\text{place factor}: | ||
| + | \color{black}{} | ||
| + | \color{blue }{\text{digits | ||
| + | \color{white}{\text{place value}: | ||
| + | \color{white}{\text{result}: | ||
| + | \end{smallmatrix} | ||
| + | \end{align*} | ||
| <---- | <---- | ||
| - | ---->> | ||
| - | |aus (0) |$\color{blue}{A_V}=\frac{U_A}{U_E}$ | ||
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
| - | << | ||
| - | ---->> | + | ----> |
| - | | $\quad$ | + | 5. calculate the place value \\ $\quad$ |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | |
| - | << | + | |
| - | ---->> | + | \begin{align*} |
| - | | $\quad$ |$A_V=\frac{U_A}{\color{blue}{U_2+U_D}}$ | $\quad$ | | + | \begin{smallmatrix} |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | \color{black}{\text{numeral}: |
| - | <<---- | + | \color{black}{\text{index}: |
| + | \color{black}{\text{place factor}: | ||
| + | \color{black}{} | ||
| + | \color{black}{\text{digits | ||
| + | \color{blue }{\text{place value}: | ||
| + | \color{white}{\text{result}: | ||
| + | \end{smallmatrix} | ||
| + | \end{align*} | ||
| + | <---- | ||
| - | ---->> | + | ----> |
| - | | $\quad$ | + | 6.Add all place values |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | |
| - | << | + | |
| - | + | ||
| - | ---->> | + | |
| - | | $\quad$ | + | |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | |
| - | << | + | |
| - | ---->> | + | \begin{align*} |
| - | | $\quad$ |$A_V=\frac{U_A}{U_A\cdot\frac{R_2}{R_1+R_2}+U_D}$ | $\quad$ | | + | \begin{smallmatrix} |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | \color{black}{\text{numeral}: |
| - | << | + | \color{black}{\text{index}: |
| - | + | \color{black}{\text{place factor}: | |
| - | ---->> | + | \color{black}{} |
| - | | $\quad$ | + | \color{black}{\text{digits |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | \color{black}{\text{place value}: |
| - | << | + | \color{blue }{\text{result}: |
| - | + | \end{smallmatrix} | |
| - | ---->> | + | \end{align*} |
| - | | $\quad$ |$A_V=\frac{U_A}{U_A\cdot\frac{R_2}{R_1+R_2}+\color{blue}{\frac{U_A}{A_D}}}$ | $\quad$ | | + | <---- |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | |
| - | << | + | |
| - | + | ||
| - | ---->> | + | |
| - | | $\quad$ | + | |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | |
| - | << | + | |
| - | + | ||
| - | ---->> | + | |
| - | | $\quad$ |$A_V=\frac{\color{blue}{U_A}}{\color{blue}{U_A}\cdot\frac{R_2}{R_1+R_2}+\frac{\color{blue}{U_A}}{A_D}}$ | Erweitern mit $\frac{1}{U_A}$ | | + | |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | |
| - | << | + | |
| - | + | ||
| - | ---->> | + | |
| - | | $\quad$ |$A_V=\frac{1}{\frac{R_2}{R_1+R_2}+\frac{1}{A_D}}$ | $\quad$ | | + | |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | |
| - | << | + | |
| - | + | ||
| - | ---->> | + | |
| - | | $\quad$ | + | |
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | |
| - | <<---- | + | |
| - | ---->> | ||
| - | | $\quad$ | ||
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
| - | << | ||
| - | ---->> | ||
| - | | $\quad$ | ||
| - | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
| - | << | ||