Dies ist eine alte Version des Dokuments!


$I.\quad$ Am Punkt $t_1$

$U_{A}(t_1) \ \ = -\quad { 1 \over {\tau} } \quad \ \cdot \int_{t_0}^{t_1} U_E \ dt \ + \ U_{A}(t_0)$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad$$\qquad\qquad$
$U_{A}(t_1) \ \ = -{ 1 \over {5 k\Omega \cdot 1 \mu F} }\cdot\int_{0}^{10ms} 1V \ dt + 0V$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad$$\qquad\qquad$
$U_{A}(t_1) \ \ = -{ 1 \over {5 ms} } \quad \cdot 1V \ \cdot \int_{0}^{10ms} \ dt$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad$$\qquad\qquad$
$U_{A}(t_1) \ \ = -{ 1 \over {5 ms} } \quad \cdot 1V \ \cdot [t]_{0}^{10ms} = -2V$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad$$\qquad\qquad$

$I.\quad$ Am Punkt $t_2$

$U_{A}(t_1) \ \ = -\quad { 1 \over {\tau} } \quad \ \cdot \int_{t_0}^{t_1} U_E \ dt \ + \ U_{A}(t_0)$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad$$\qquad\qquad$
$U_{A}(t_1) \ \ = -{ 1 \over {5 ms} } \quad \cdot (-1V) \ \cdot [t]_{10ms}^{20ms} + 2V = 0V$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad$$\qquad\qquad$

$I.\quad$ Am Punkt $t_3$

$U_{A}(t_1) \ \ = -\quad { 1 \over {\tau} } \quad \ \cdot \int_{t_0}^{t_1} U_E \ dt \ + \ U_{A}(t_0)$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad$$\qquad\qquad$
$U_{A}(t_1) \ \ = -{ 1 \over {5 ms} } \quad \cdot (-2V) \ \cdot [t]_{10ms}^{20ms} + 0V = -2V$
$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad$$\qquad\qquad$