10 SPI Schnittstelle

Nach dieser Lektion sollten Sie:

  1. wissen, welche wie man theoretisch mehrere Slaves mit einem Master verbindet.
  2. die Namen der 4 Leitungen und deren Funktionen kennen, welche jeweils an einem Slave enden.
  3. die Abkürzungen SDI, SDO, MOSI, MISO, CS, SS, SCK kennen
  4. die Vorteile von einer synchronen im Vergleich zu einer asynchronen Schnittstelle erklären können.

Theorie zum SPI

Beispiel für SPI mittels Arduino

Abb. 1: Zusammenspiel der SPI-Register microcontrollertechnik:spiregister.svg

I. Vorarbeiten
  1. Laden Sie folgende Datei herunter:
II. Analyse des fertigen Programms
  1. Initialisieren des Programms
    1. Öffnen Sie SimulIDE und öffnen Sie dort mittels simulide_open.jpg die Datei mexleuhr_spi.simu. In der Simulation sind einige Änderungen zu finden:
      1. Die Schalter sind an den Pins C0…C3 angeschlossen, statt an den Pins B1…B4. Viele der Pins haben - neben er Möglichkeit digitale Werte auszugeben - weitere Funktionen. Im Datenblatt ist diese Belegung beschrieben:
        • Bei PB2 steht auch $\overline{SS}$ für „Slave Select“
        • Bei PB3 steht auch $MOSI$ für „Master out, slave in“
        • Bei PB4 steht auch $MISO$ für „Master in, slave out“
        • zusätzlich steht bei PB5 steht auch $SCK$ für „serial clock“
      2. Diese Anschlüsse sind an einem weiteren Display „Pcd8544“ angeschlossen. Zusätzlich ist PB1 an „D/C“ des Displays angeschlossen
      3. PB3 ($MOSI$) ist zusätzlich an einem Oszilloskop angeschlossen. Die Eingänge zum PCD8544 sind jeweils an eine Probe angeschlossen. Die Probes sind mit einem Plotterkanal verbunden.
    2. Laden Sie mexleuhr_master.hex als firmware auf den 328 Chip
    3. Zunächst wird eine Startanzeige mit dem Namen des Programms dargestellt.
    4. Als nächstes ist im Display eine Uhr mit dem Format HH:MM:SS Menu zu sehen
    5. Die Tasten $S2$ und $S3$ ermöglichen das Einstellen der Stunde und Minute.
    6. Bleibt die Taste $S1$ gedrückt, so werden die Zehntelsekunden auf dem Display Pcd8544 ausgegeben.
    7. Beim Druck auf die Taste $S4$ wird eine Linie zwischen zwei zufälligen Punkten gezeichnet
  2. Das Programm zu diesem Hexfile soll nun erstellt und erklärt werden
III. Eingabe in Microchip Studio

/* ============================================================================
 
Experiment 7:   MEXLE-Uhr mit hh:mm:ss-Anzeige und SPI-Master
=============   =========================================================
 
Dateiname:      MEXLEuhr_Master.c
 
Autoren:        Prof. T. Fischer (Hochschule Heilbronn)
                Prof. G. Gruhler (Hochschule Heilbronn)
                D. Chilachava    (Georgische Technische Universitaet)
 
Version:        0.2 vom 23.05.2020
 
Hardware:       Simulide 
 
Software:       Microchip Studio Ver. 7.xx              
 
Funktion:       Digitaluhr mit Anzeige von Stunden, Minuten und Sekunden. Eine
                einfache Stellfunktion ist mit den Tasten S2 und S3 realisiert.
                Mit S1 und S4 kann die SPI-Kommunikation mit einem Slave-Display
                gestartet werden
 
Displayanzeige: Start (fuer 2s):        Betrieb:
                +----------------+      +----------------+
                | MEXLEuhr - SPI |      |=== 00:00:00 ===|
                |     Master     |      |10tl Std Min Lin|
                +----------------+      +----------------+
 
Tastenfunktion: S1: uebertraegt die Zehntelsekunde vom Master zum Slave
                S2: Std (zaehlt Stunden bei Flanke aufwaerts. Ueberlauf bei 24)
                S3: Min (zaehlt Minuten bei Flanke aufwaerts. Ueberlauf bei 60)
                        (setzt Sekunden beim Druecken zurueck auf 00)
                S4: uebertraegt die Info zum Darstellen einer Linie zum Master
 
Fuses im uC:    CKDIV8: Aus (keine generelle Vorteilung des Takts)
 
Header-Files:   lcd_lib_de.h    (Library zur Ansteuerung LCD-Display Ver. 1.2)
 
Libraries:      pcd8544.c       (Library        fuer die Ansteuerung des Displays)
                pcd8544.h       (Header-Datei   fuer die Ansteuerung des Displays)
 
Module:         1) Taktgenerator
                2) Zaehler fuer Uhr (Takt: 1 s)
                3) Anzeigetreiber   (Takt: 100 ms)
                4) Stellfunktion    (Takt: 10 ms)
                5) SPI-Funktionen
                 
 
    Die Kopplung der Module wird ueber global definierte Variable realisiert:
 
    1-Bit-Variable:     takt10ms:   Taktgenerator => Stellfunktion
                        takt100ms:  Taktgenerator => Anzeigetreiber
                        takt1s:     Taktgenerator => Zaehler fuer Uhr
 
    8-Bit-Variable:     sekunden    Stellfunktion => Zaehler => Anzeige
                        minuten
                        stunden
 
=============================================================================*/
 
 
// Deklarationen ==============================================================
 
// Festlegung der Quarzfrequenz
 
#ifndef F_CPU							// optional definieren
#define F_CPU 12288000UL                // MiniMEXLE mit 12,288 MHz Quarz    
#endif                              
 
 
// Include von Header-Dateien
 
#include <avr/io.h>                     // I/O-Konfiguration (intern weitere Dateien)
#include <stdbool.h>					// Bibliothek fuer Bit-Variable
#include <stdlib.h>						// Bibliothek fuer Bit-Variable
#include <avr/interrupt.h>              // Definition von Interrupts
#include <util/delay.h>                 // Definition von Delays (Wartezeiten)
#include "lcd_lib_de.h"                 // Header-Datei fuer LCD-Anzeige
#include "pcd8544.h"                    // Header Datei des Displays
 
// Makros
 
#define SET_BIT(BYTE, BIT)  ((BYTE) |=  (1 << (BIT))) // Bit Zustand in Byte setzen
#define CLR_BIT(BYTE, BIT)  ((BYTE) &= ~(1 << (BIT))) // Bit Zustand in Byte loeschen
#define TGL_BIT(BYTE, BIT)  ((BYTE) ^=  (1 << (BIT))) // Bit Zustand in Byte wechseln (toggle)
#define GET_BIT(BYTE, BIT)  ((BYTE) &   (1 << (BIT))) // Bit Zustand in Byte einlesen
 
// Konstanten
 
#define PRESCALER_VAL		30          // Faktor Vorteiler = 90
#define CYCLE10MS_MAX		10			// Faktor Hundertstel = 10
#define CYCLE100MS_MAX      10          // Faktor Zehntel = 10
 
#define SPEAK_PORT          PORTD       // Port-Adresse fuer Lautsprecher
#define SPEAK_BIT           5           // Port-Bit fuer Lautsprecher
#define LED_PORT            PORTB       // Port-Adresse fuer LED
#define LED_BIT             0           // Port-Bit fuer gelbe LED an PB2
 
#define ASC_NULL            0x30        // Das Zeichen '0' in ASCII
#define ASC_COLON           0x3A        // Das Zeichen ':' in ASCII
 
#define NO					0			// Deactive Wert
#define YES					1			// Active Wert
#define PRESSED				0			// Button gedrückt
#define UNPRESSED			1			// Button nicht gedrückt

#define HOURS_MAX			24			// max Wert der Stunden
#define MINUTES_MAX			60			// max Wert der Minuten
#define SECONDS_MAX			60			// max Wert der Sekunden
#define TENTH_MAX			10			// max Wert der Zentelsekunden

#define POS_MAX				13			// max Wert der (x)-Position
#define LINE_MAX			5			// max Wert der Zeile

// Variable
 
unsigned char softwarePrescaler = PRESCALER_VAL;    // Zaehlvariable fuer den Software-Vorteiler
unsigned char cycle10msCount	= CYCLE10MS_MAX;	// Zaehlvariable Hundertstel
unsigned char cycle100msCount   = CYCLE100MS_MAX;   // Zaehlvariable Zehntel
 
unsigned char tenthOfASecond	= 0;	// Variable Sekunden
unsigned char seconds			= 56;	// Variable Sekunden
unsigned char minutes			= 34;	// Variable Minuten
unsigned char hours				= 12;	// Variable Stunden
 
unsigned char line				= 0;	// x-Koordinate
unsigned char pos				= 0;    // y-Koordinate
unsigned char character			='a'-1; // auszugebendes Zeichen
 
bool timertick;                         // Bit-Botschaft alle 0,111ms (bei Timer-Interrupt)
bool cycle10msActive;                   // Bit-Botschaft alle 10ms
bool cycle100msActive;                  // Bit-Botschaft alle 100ms
bool cycle1sActive;                     // Bit-Botschaft alle 1s
 
bool button1_new = 1;                   // Bitspeicher fuer Taste 1
bool button2_new = 1;                   // Bitspeicher fuer Taste 2
bool button3_new = 1;                   // Bitspeicher fuer Taste 3
bool button4_new = 1;                   // Bitspeicher fuer Taste 4
bool button1_old = 1;                   // alter Wert von Taste 1
bool button2_old = 1;                   // alter Wert von Taste 2
bool button3_old = 1;                   // alter Wert von Taste 3
bool button4_old = 1;                   // alter Wert von Taste 4
 
bool PcdSendMessage = 0;                // Flag fuer sendebereite SPI-Nachricht
 
// Funktionsprototypen
 
void timerInt0(void);                   // Init Zeitbasis mit Timer 0
void setTime(void);						// Stellfunktion
void showTime(void);					// Anzeigefunktion
void refreshTime(void);                 // Uhrfunktion
void initDisplay(void);                 // Init Anzeige
void showTenthOfASecond(void);			// Anzeige der Zehntelsenkunde auf separatem Display
 
// Hauptprogramm ==============================================================
 
int main()
{
    // Initialisierung
     
    initDisplay();                      // Initialisierung LCD-Anzeige
    pcd_init();
 
    TCCR0A = 0;                         // Timer 0 auf "Normal Mode" schalten
    SET_BIT(TCCR0B, CS01);              // mit Prescaler /8 betreiben
    SET_BIT(TIMSK0, TOIE0);             // Overflow-Interrupt aktivieren
 
    SET_BIT(DDRD, SPEAK_BIT);           // Speaker-Bit auf Ausgabe
    PORTC |= 0b00001111;                // Taster Anschluesse auf Pullup R
    SET_BIT(DDRB, LED_BIT);             // LED-Bit auf Ausgabe
 
    sei();                              // generell Interrupts einschalten
     
    // Hauptprogrammschleife
 
    while(1)                            // unendliche Warteschleife mit Aufruf der
                                        // Funktionen abhaengig von Taktbotschaften
    {
        if (cycle10msActive)            // alle 10ms:
        {
            cycle10msActive = NO;		//      Botschaft "10ms" loeschen
            setTime();					//      Tasten abfragen, Stellen, SPI-Komm.
        }
 
        if (cycle100msActive)           // alle 100ms:
        {
            cycle100msActive = NO;      //      Botschaft "100ms" loeschen
            if (PcdSendMessage)         // wenn SPI-Nachricht gesendet werden soll:
            {               
                PcdSendMessage = NO;     // Botschaft loeschen
                TGL_BIT(LED_PORT, LED_BIT);     // LED Zustand wechseln
                showTenthOfASecond();	// Anzeige auf PCD Display
            }
            showTime();					//      Uhrzeit auf Anzeige ausgeben
            refreshTime();              //      Uhr weiterzaehlen
        }
 
        if (cycle1sActive)              // alle Sekunden:
        {
            cycle1sActive = NO;         //      Botschaft "1s" loeschen
            TGL_BIT(LED_PORT, LED_BIT); //		LED Zustand wechseln
            pcd_init();
        }       
    }
    return 0;
}
 
 
// Interrupt-Routine ==========================================================
 
ISR (TIMER0_OVF_vect)
 
/*  In der Interrupt-Routine sind die Softwareteiler realisiert, die die Takt-
    botschaften (10ms, 100ms, 1s) fuer die gesamte Uhr erzeugen. Die Interrupts
    werden von Timer 0 ausgeloest (Interrupt Nr. 1)
 
    Veraenderte Variable: softwarePrescaler
                          cycle10msCount
                          cycle100msCount
 
    Ausgangsvariable:     cycle10msActive
                          cycle100msActive
                          cycle1sActive
*/
 
{
    timertick = 1;									// Botschaft 0,111ms senden
    --softwarePrescaler;							// Vorteiler dekrementieren
    if (softwarePrescaler==0)						// wenn 0 erreicht: 10ms abgelaufen
    {
        softwarePrescaler = PRESCALER_VAL;			//    Vorteiler auf Startwert
        cycle10msActive   = YES;					//    Botschaft 10ms senden
        --cycle10msCount;							//    Hunderstelzaehler dekrementieren
 
        if (cycle10msCount==0)						// wenn 0 erreicht: 100ms abgelaufen
        {
            cycle10msCount   = CYCLE10MS_MAX;		// Teiler auf Startwert
            cycle100msActive = YES;					//    Botschaft 100ms senden
            --cycle100msCount;						//    Zehntelzaehler dekrementieren
 
            if (cycle100msCount==0)					// wenn 0 erreicht: 1s abgelaufen
            {
                cycle100msCount = CYCLE100MS_MAX;	//    Teiler auf Startwert
                cycle1sActive   = YES;				//    Botschaft 1s senden
            }
        }
    }
}
 
// Stellfunktion ==============================================================
 
void setTime(void)
 
/*  Die Stellfunktion der Uhr wird alle 10ms aufgerufen. Dadurch wir eine
    Entprellung der Tastensignale realisiert. Das Stellen wir bei einer 
    fallenden Flanke des jeweiligen Tastensignals durchgefuehrt. Darum 
    muss fuer einen weiteren Stellschritt die Taste erneut betaetigt werden.
    Ebenso wird die SPI-Funktion hier aufgerufen.
 
    Eine Flanke wird durch (alter Wert == 1) UND (aktueller Wert == 0) erkannt.
 
    Mit der Taste S1 wird die Uebergabe der Zeit Master > Slave gestartet
    Mit der Taste S2 werden die Stunden aufwaerts gestellt.
    Mit der Taste S3 werden die Minuten aufwaerts gestellt (kein Uebertrag)
    Solange Taste S3 gedrueckt ist werden die Sekunden auf 00 gehalten
    Mit der Taste S4 wird die Uebergabe der Zeit Master < Slave gestartet
 
    Veraenderte Variable: hours
                          minutes
                          seconds
                           
    Speicher fuer Bits:   button1_old
                          button2_old
                          button3_old
                          button4_old
*/
 
{   
    button1_new = GET_BIT(PINC, PC0);       // Tasten von Port einlesen
    button2_new = GET_BIT(PINC, PC1);
    button3_new = GET_BIT(PINC, PC2);
    button4_new = GET_BIT(PINC, PC3);
 
    if (button1_new==PRESSED)				// wenn Taste 1 gedrueckt ist:
    {
        PcdSendMessage = YES;				//    Senden der SPI-Nachricht aktivieren
    }
     
    if ( (button2_new==PRESSED)
		&(button2_old==UNPRESSED))			// wenn Taste 2 eben gedrueckt wurde:
    {
        hours++;							//    Stunden hochzaehlen, Ueberlauf bei 23
        if (hours== HOURS_MAX)
            hours = 00;
    }
    if ( (button3_new==PRESSED)
		&(button3_old==UNPRESSED))			// wenn Taste 3 eben gedrueckt wurde:
    {
        minutes++;							//    Minuten hochzaehlen, Ueberlauf bei 59
        if (minutes== MINUTES_MAX)
            minutes = 00;
    }
    if (button3_new==PRESSED)               // solange Taste 3 gedrueckt:
		seconds = 00;						//    Sekunden auf 00 setzen
 
    if ((button4_new==0)&(button4_old==1))  // wenn Taste 3 eben gedrueckt wurde:
    {
        pcd_putLine(rand()%83,rand()%47,rand()%83,rand()%47);
        pcd_updateDisplay();
    }
     
    button1_old = button1_new;              // aktuelle Tastenwerte speichern
    button2_old = button2_new;              // in Variable fuer alte Werte
    button3_old = button3_new;
    button4_old = button4_new;
}
 
// Anzeigefunktion Uhr ========================================================
 
void showTime(void)
 
/*  Die Umrechnung der binaeren Zaehlwerte auf BCD ist folgendermaßen geloest: 
    Zehner: einfache Integer-Teilung (/10)
    Einer:  Modulo-Ermittlung (%10), d.h. Rest bei der Teilung durch 10
*/
 
{
    lcd_gotoxy(0,4);						// Cursor auf Start der Zeitausgabe setzen
 
    lcd_putc(ASC_NULL + hours/10);			// Stunden Zehner als ASCII ausgeben
    lcd_putc(ASC_NULL + hours%10);			// Stunden Einer als ASCII ausgeben
    lcd_putc(ASC_COLON);					// Doppelpunkt ausgeben
 
    lcd_putc(ASC_NULL + minutes/10);		// Minuten als ASCII ausgeben
    lcd_putc(ASC_NULL + minutes%10);		// 
    lcd_putc(ASC_COLON);					// Doppelpunkt ausgeben
 
    lcd_putc(ASC_NULL + seconds/10);		// Sekunden als ASCII ausgeben
    lcd_putc(ASC_NULL + seconds%10);		//
}
 
// Anzeigefunktion fuer PCD Display ========================================================
 
void showTenthOfASecond(void)
 
/*  Anzeigen der Zenhtelsekunden auf dem Display PCD8544
*/
 
{
    pcd_gotoxy(line, pos);					// Setze Position am Display
    pcd_putc(tenthOfASecond+0x30);			// Schreibe Zehntelsekunden 
    pcd_updateDisplay();					// Aktualisiere das Display des PCD8544
    if (++pos > POS_MAX)					// naechste Position, und wenn diese ausserhalb der Anzeige
    {
        pos = 0;							// zurueck auf erste Position
        if (++line > LINE_MAX)				// naechste Zeile, und wenn diese ausserhalb der Anzeige
        {
            line = 0;						// zurueck auf erste Zeile
            pcd_clearDisplay();				// loesche Anzeige
        };
    }
}
 
// Initialisierung Display-Anzeige ============================================
 
void initDisplay()							// Start der Funktion
{
    lcd_init();					            // Initialisierungsroutine aus der lcd_lib
     
    lcd_gotoxy(0,0);						// Cursor auf 1. Zeile, 1. Zeichen
    lcd_putstr("- Experiment 7a-");			// Ausgabe Festtext: 16 Zeichen
 
    lcd_gotoxy(1,0);						// Cursor auf 2. Zeile, 1. Zeichen
    lcd_putstr("Uhr + SPI-Master");			// Ausgabe Festtext: 16 Zeichen
 
    _delay_ms(1000);						// Wartezeit nach Initialisierung
 
    lcd_gotoxy(0,0);						// Cursor auf 1. Zeile, 1. Zeichen
    lcd_putstr("=== 00:00:00 ===");			// Ausgabe Festtext: 16 Zeichen
 
    lcd_gotoxy(1,0);						// Cursor auf 2. Zeile, 1. Zeichen
    lcd_putstr("10tl Std Min Lin.");        // Ausgabe Festtext: 16 Zeichen
 
}											// Ende der Funktion
 
 
// Zaehlfunktion Uhr ==========================================================
 
void refreshTime (void)						// wird jede Sekunde gestartet
 
/*  Die Uhr wird im Sekundentakt gezaehlt. Bei jedem Aufruf wird auch ein 
    "Tick" auf dem Lautsprecher ausgegeben. Ueberlaeufe der Sekunden zaehlen
    die Minuten, die Ueberlaeufe der Minuten die Stunden hoch.
 
    Veraenderte Variable:   seconds
                            minutes
                            hours
*/
 
{
    TGL_BIT (SPEAK_PORT, SPEAK_BIT);		// "Tick" auf Lautsprecher ausgeben
											// durch Invertierung des Portbits
    tenthOfASecond++;
    if (tenthOfASecond== TENTH_MAX)			// bei Ueberlauf:
    {
        tenthOfASecond = 0;
        seconds++;							// Sekunden hochzaehlen
        if (seconds== SECONDS_MAX)			// bei Ueberlauf:
        {
            seconds = 0;					//   Sekunden auf 00 setzen
            minutes++;						//   Minuten hochzaehlen
            if (minutes== MINUTES_MAX)		//   bei Ueberlauf:
            {
                minutes = 0;				//     Minuten auf 00 setzen
                hours++;					//     Stunden hochzaehlen
                if (hours== HOURS_MAX)		//     bei Ueberlauf:
                    hours = 0;				//       Stunden auf 00 setzen
            }
        }
    }
}

/*=============================================================================

Ändern Sie auch hier wieder die Beschreibung am Anfang des C-Files, je nachdem was Sie entwickeln













































Deklarationen ===================================

  1. Hier wird wieder geprüft ob die Frequenz des Quarz bereits eingestellt wurde und - falls nicht - dessen Frequenz eingestellt. Die Frequenz ist diesmal merklich niedriger, da die Ansteuerung des Display keine höheren Raten erlaubt


  2. Zusätzlich zu den bisherigen Header-Dateien sind nun folgende hinzugekommen:

    1. <stdlib.h> - Standard-Bibliothek für Typenumwandlung und mehr. Hiervon wird die Erstellung von Zufallswerten genutzt

    2. „pcd8544.h“ - Bibliothek für das einbinden des neuen Displays


  3. Die Makros entsprechen denen der letzten Programme.



  4. Die Konstanten entsprechen im Wesentlichen denen der letzten Programme. Der Vorteiler Wert entspricht aber hier der Hälfte des bisherigen Wertes, da die Taktfrequenz ebenso halb so groß ist.







  5. Für die Zeichen 0 und : werden für die ASCII-Codes Makros definiert. Dadurch wird das Lesen des am Display ausgegebenen Textes im Code einfacher.

  6. Für die anschaulichere Beschreibung von Bitwerten wird „YES“, „NO“, sowie „PRESSED“ und „UNPRESSED“ definiert



  7. Die Grenzen der Zeitgrößen sind hier ebenso definiert.


  8. Bei den Variablen entsprechen einige denen der letzten Programme.




  9. Bei den Variablen entsprechen einige denen der letzten Programme.


  10. Für die Uhr werden Stunden, Minuten, Sekunden und Zehntelsekunden mit Anfangswerten deklariert.


  11. Für das neue Display werden Variablen für die Textposition und für das auszugebenden Zeichen deklariert.












  12. Das Flag PcdSendMessage zeigt an, ob Zeichen regelmäßig zu übertragen sind.


  13. Bei den Funktionsprototypen sind einige bekannte Unterprogramme vorhanden. Details werden weiter unten erklärt.



Hauptprogramm =========================



  1. Zunächst werden zwei Initialisierungsroutinen aufgerufen (siehe weiter unten)
  2. Dann werden wieder „Timer/Counter Control Register“ und „Timer Interrupt MaSK“ konfiguriert.
  3. Die „Data Direction Register“ wurden auch bereits beschrieben. Diese werden hier so konfiguriert, dass zwei Anschlüsse für Lautsprecher und LED als Ausgang definiert sind.

  4. Auch die Konfiguration der Anschlüsse für die Schalter wurde bereits erklärt. Die an Port C angeschlossenen Taster erhalten dadurch einen Pull-up Widerstand.

  5. Mit dem Befehl sei() wird die Bearbeitung von Interrupts aktiv.


  6. In der Endlosschleife sind verschiedene Zeitzyklen vorgesehen (wie beim Up/Down Counter).

    1. im $10~\rm ms$ Raster (auch $10~\rm ms$ Zyklus genannt) wird die Unterfunktion setTime() zum (möglichen) Ändern der Uhrzeit aufgerufen.





    2. im $100~\rm ms$ Raster werden die Unterfunktionen showTime() für die Anzeige und refreshTime() zum Weiterzählen aufgerufen. Davor wird, falls das Flag PcdSendMessage gesetzt ist, wird dieses zurückgesetzt, die LED blinkt und das Unterprogramm showTenthOfASecond() wird aufgerufen.






    3. im $1~\rm s$ Raster blinkt die LED und das Unterprogramm pcd_init zum initialisieren des PCD Displays wird aufgerufen.






Interrupt Routine =========================

  1. Mit dem Befehl ISR() wird wieder die Interrupt Service Routine für den OVerFlow Interrupt des TIMER0 angelegt.











  2. Die Ermittlung von timertick, softwarePrescaler, cycle10msActive, cycle10msCount und cycle100msActive ist hier wieder gleich dem im Up/Down Counter.










  3. Eine Erweiterung auf cycle100msCount und cycle1sActive wurde hier mit eingefügt.



Funktion Tasten einlesen ==============





















  1. In dieser Funktion werden zunächst die Stellungen aller Taster eingelesen (vgl. counterCounting(void) bei Up/down Counter).

  2. Die Flankenerkennung in den if-Bedingungen wurde auch bereits beim Up/down Counter erklärt.
  3. Wenn die Taste S1 gedrückt ist, so wird das Flag PcdSendMessage gesetzt, welches in main zum Aufrufen des Unterprogramm showTenthOfASecond in jedem $100~\rm ms$ Raster führt.


  4. Die Tasten S2 und S3 führen zum einmaligem Hochzählen der Stunden bzw. Minuten. Wenn der jeweilige Wert über das Maximum hinausläuft, so beginnt dieser wieder beim Minimum.









  5. Die Taste S4 zeichnet eine Linie mittels pcd_putLine und aktualisiert das Displays des PCD8544










Anzeigefunktion Uhr =========================







  1. Auf dem LCD wird zunächst die Position (0,4) als Ausgabeort vorgegeben
  2. Vom Wert hours wird zunächst die Zehnerstelle über Division ermittelt und ausgegeben. Die Einerstelle ergibt sich über Modulo (%).
  3. Danach wird ein Doppelpunkt ausgegeben
  4. Die Anzeige von Minuten und Sekunden erfolgt analog.






Anzeigefunktion fuer PCD Display =========================



  1. Auch für die Anzeige auf dem PCD 8544 wird zunächst die Position auf dem Display mittels pcd_gotoxy definiert.
  2. Der Wert der Zehntelsekunde wird über pcd_putc auf dem Display ausgegeben.
  3. Danach wird die Displayanzeige aktualisiert
  4. Die Position auf dem PCD Display wird anschließend erhöht. Da nur 13 Zeichen in eine Zeile passen, wird - falls diese Grenze erreicht wurde - die Position zurückgesetzt.
  5. Falls das Ende einer Zeile erreicht wurde, wird die Zeilenposition erhöht. Wenn die Maximalzahl von 5 Zeilen erreicht wurde, so wird wieder auf die erste Position der ersten Zeile zurückgesprungen und das Display gelöscht.



Initialisierung Display-Anzeige =====

  1. Hier werden der Anfangs-Screen ausgegeben, etwas gewartet und anschließend die Anzeige für die Uhr angelegt.















Zaehlfunktion Uhr =================










  1. Hier wird zunächst ein Flankenwechsel für den Lautsprecher ausgegeben. Damit knackt der Lautsprecher etwa im $10~\rm ms$ Takt.
  2. In den verschachtelten if-Anweisungen werden jeweils die einzelnen Werte (z.B. tenthOfASecond) hochgezählt. Sobald das Maximum erreicht wurde, so wird dieser Wert zurückgesetzt und der nächstgrößere Wert hochgezählt. Dies geschieht in der Art, dass auch mehrere Überläufe gleichzeitig stattfinden können: z.B. von 23:59:59:9 auf 0: 0: 0:0
IV. Ausführung in Simulide
  1. Legen Sie in Microchip Studio ein neues Projekt an.
  2. Fügen Sie in dieses die *.c und *.h Files aus dem File pcd8544.zip hinzu.
    Dazu ist zunächst das zip-File zu entpacken und die Files dann als Existing Item hinzuzufügen - wie in 2_sound_und_timer beschrieben.
  3. Geben Sie die oben dargestellten Codezeilen in main.c ein und kompilieren Sie den Code.
  4. Öffnen Sie Ihre hex-Datei in SimulIDE und testen Sie, ob diese die gleiche Ausgabe erzeugt


Bitte arbeiten Sie folgende Aufgaben durch:

Aufgaben
  1. Analyse der Zufallsfunktion rand()
    1. Wenn Sie die Taste S4 drücken, erscheint eine Linie mit zufälligen Anfangs- und Endpunkten auf dem Display PCD8544.
    2. Prüfen Sie nach, ob die Anfangs- und Endpunkte tatsächlich zufällig zu sein scheinen.
      Wie sieht dies nach dem Neustart des Systems aus?

  2. Analyse der seriellen Kommunikation
    1. Wenn Daten vom Mikrocontroller zum PCD8544 übertragen werden, so ist auf dem Oszilloskop die Situation der Signale auf den Leitungen zum Display zu sehen. Im folgenden soll dieses genauer betrachtet werden.
    2. Dazu starten Sie zunächst die Simulation und zeichnen Sie durch mehrmaliges Drücken von S4 viele Linien auf das Display und halten Sie S1 geschlossen.
    3. Nun sollten die Signale gut aufgelöst sichtbar sein:
      simulide_beispiel_anzeige_osziklein.jpg
      1. Das 1. Signal CLK (CLocK, gelb) taktet 8 mal und zeigt dann eine kurze Pause
      2. Das 2. Signal DIN (Data _IN_, hellblau) zeigt das eigentliche Signal. Bei der SPI-Schnittstelle wird dieses Signal MOSI (Master Out, Slave In) genannt. Dies kann bei Ihnen auch nur LOW, bis auf einen kurzen HIGH Pegel am Ende der 8 Takte von CLK zeigen. Das Signal entspricht jeweils einem 8-bit langen Teil einer Pixel-Zeile. Wenn nur wenig Pixel auf dem Display dunkel sein sollen, so ist dieses Signal häufig LOW. Im Bild oben ist ein etwas wechselhafteres Signal zu sehen.
      3. Das 3. Signal D/C (Data/Command, orange) ist fast immer HIGH. Dieses Signal zeit an, ob das Signal auf dem Kanal DIN als Kommando oder Daten interpretiert werden sollen. Wenn Daten auf dem Display ausgegeben werden sollen, so ist dieses Signal HIGH. Diese Signal ist kein Teil der offiziellen SPI Schnittstelle.
      4. Das 4. Signal CS (Chip Select, mintgrün) wird nur zwischen den takten von CLK HIGH. Das Signal zeigt an, dass der Slave auf das folgende Signal hören soll und wird gelegentlich auch SS (Slave Select) genannt.
    4. Um den Signalverlauf besser zu sehen, kann mit einem Klick auf Expand das Oszilloskop separiert und größer dargestellt werden
      simulide_beispiel_anzeige_oszigross.jpg
    5. Das im Bild dargestellte Signal ist 00100111 also 0x27 oder dezimal 39.
  3. Analyse der Dateien in pcd8544.zip in Microchip Studio
    1. In der Datei characterset5x8.c ist der Zeichensatz für das Display zu finden. Warum ist dieser um 90° gedreht?
    2. In der Datei pcd8544.c ist die eigentliche Bibliothek für die Kommunikation zum Display zu finden.
      1. Der Datentransfer über SPI geschieht über das Register SPDR (SPI Data Register). In welcher Funktion in der Bibliothek wird dieses Register gefüllt? Lösung
      2. Suchen Sie in dem Datenblatt des 328P nach SPSR (SPI Status Register). Für was ist darin das Flag SPIF zuständig? Wie soll dieses verwendet werden?
      3. Von welchen anderen Funktionen wird die gefundene Funktion aufgerufen?
      4. Was wird bei den Funktionen pcd_putPixel() und pcd_putc() tatsächlich beschrieben? Wird darin direkt das Display angesprochen?
    3. Vergleichen Sie die Wirkung der Funktionen lcd_putc() für das 2×16 Zeichen Display und pcd_putc() für das Pixeldisplay. Wie unterscheidet sich die Verwendung? Was muss nach dem Aufruf von pcd_putc() noch gemacht werden, dass das Zeichen ausgegeben wird und, dass das nächste Zeichen dahinter ausgegeben wird?

  4. Erweiterung der Uhr
    1. Wie kann die Uhr so erweitert werden, dass auch Zehntelsekunden ausgegeben werden?
    2. Wie kann die Uhr erweitert werden, dass auch Tage, Monate und Jahre hochgezählt werden können?
      1. Was muss bei der Berechnung der Tage, Monate und Jahre beachtet werden?
      2. Wie ist es möglich diesen Kalender und den Überlauf von Tage, Monate und Jahre zu testen?
        (mehrere Jahre warten wäre eine schlechte Lösung)
  • Diese Falstad-Simulation skizziert die Funktionsweise der SPI Schnittstelle (Achtung: Die Simulation beinhaltet noch einige Bugs)
  • Ein einfaches Beispiel für eine Anfrage von Daten beim Slave ist unter weitere Codebeispiele eingefügt